Links to the course material will be provided in the schedule below after each class. You may want to have a look at the previous edition of the course for reference.

The course schedule

Week Monday Wednesday Friday
01 Apr 13
No class
Apr 15
No class
Apr 17
No class
02 Apr 20
Dept. meeting - no class
Apr 22
Introduction 
[slides, 8up]
Apr 24
Math preliminaries 
[slides, 8up, notes]
03 Apr 27
Probability theory 
[slides, 8up, notes]
Apr 29
Information theory 
[slides, 8up, notes]
May 01
No class
04 May 04
Machine learning introduction 
[slides, 8up, notes]
May 6
ML intro (contd.) 
May 8
Classification 
[slides, 8up, notes]
05 May 11
Classification (contd.) 
May 13
ML evaluation 
[slides, 8up, notes]
May 15
lab 
[slides]
06 May 18
ML evaluation (contd.) 
May 20
ANN basics 
[slides, 8up, notes]
May 22
lab 
07 May 25
Unsupervised learning 
[slides, 8up, notes]
May 27
Summary 
May 29
lab 
[slides]
Jun 01
Sem. break
Jun 03
Sem. break
Jun 05
Sem. break
08 Jun 08
Sequence learning 
[slides, 8up, notes]
Jun 10
Sequence learning 
Jun 12
lab 
09 Jun 15
Recurrent and convolutional networks 
[slides, 8up, notes]
Jun 17
Recurrent and convolutional networks 
Jun 19
lab 
10 Jun 22
Language models 
[slides, 8up]
Jun 24
Language models 
Jun 26
lab 
11 Jun 29
Tokenization / segmentation 
[slides, 8up]
Jul 01
POS tagging and morphology 
[slides, 8up]
Jul 03
lab 
12 Jul 6
Dense vector representations 
[slides, 8up]
Jul 8
Text classification 
[slides, 8up]
Jul 11
lab 
11 Jul 13
Parsing I 
[slides, 8up]
Jul 15
Parsing II 
Jul 17
lab 
14 Jul 20
State of the art in NLP 
Jul 22
Exam preparation/discussion 
Jul 24
Exam 
[exam, data]