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Some (typical) machine learning applications

x (input) y (output)

Spam detection document spam or not
Sentiment analysis product review sentiment
Medical diagnosis patient data diagnosis
Credit scoring financial history loan decision

The cases (input–output) pairs are assumed to be
independent and identically distributed (i.i.d.).
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Structured prediction
In many applications, the i.i.d. assumption is wrong

x (input) y (output)

POS tagging word sequence POS sequence
Parsing word sequence parse tree
OCR image (array of

pixels)
sequences of letters

Gene prediction genome genes

Structured/sequence learning is prevalent in NLP.
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In this lecture …

• Hidden Markov models (HMMs)
• A short note on graphical probabilistic models
• Alternatives to HMMs (briefly): HMEM / CRF

… and soon
• Recurrent neural networks
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Recap: chain rule

We rewrite the relation between the joint and the conditional
probability as

P(X, Y) = P(X | Y)P(Y)

We can also write the same quantity as,

P(X, Y) = P(Y | X)P(X)

In general, for any number of random variables, we can write

P(X1,X2, . . . ,Xn) = P(X1 | X2, . . . ,Xn)P(X2, . . . ,Xn)
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Recap: (conditional) independence

If two variables X and Y are independent,

P(X | Y) = P(X) and P(X, Y) = P(X)P(Y)

If two variables X and Y are independent given another variable
Z,

P(X, Y | Z) = P(X | Z)P(Y | Z)
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An example: probability of a sentence

P(It’s a beautiful day) = ?

• We cannot just count all occurrences of the sentence, and
divide it to the total number of sentences in English

• But we can base its probability to the probabilities of the
words. Using chain rule

P(It’s a beautiful day) = P(day | It’s a beautiful)P(It’s a beautiful)
= P(day | It’s a beautiful)P(beautiful | It’s a)P(It’s a)
= P(day | It’s a beautiful)P(beautiful | It’s a)P(a | It’s)P(It’s)

• Did we solve the problem?
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Markov chains
calculating probabilities

Given a sequence of events (or states), q1,q2, . . .qt,
• In a first-order Markov chain, the probability of an event qt

is
P(qt|q1, . . . ,qt−1) = P(qt|qt−1)

• In higher order chains, the dependence of history is
extended, e.g., second-order Markov chain:

P(qt|qt, . . . ,qt−1) = P(qt|qt−2,qt−1)

• The conditional independence properties simplify the
probability distributions
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Markov chains
definition

A Markov model is defined by,
• A set of states Q = {q1, . . . ,qn}

• A special start state q0

• A transition probability matrix

A =


a01 a02 . . . a0n

a11 a12 . . . a1n

...
... . . . ...

an1 an2 . . . ann


where aij is the probability
of transition from state i to
state j
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Back to sentence probability example

• With a first-order Markov assumption,

P(It’s a beautiful day) = P(day | It’s a beautiful)P(beautiful | It’s a)P(a | It’s)P(It’s)
= P(day | beautiful)P(beautiful | a)P(a | It’s)P(It’s | ⟨S⟩)

• Now the probabilities are easier to calculate
• The above approach is an example of n-gram language
models that we will return very soon
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Hidden/latent variables

• In many machine learning problems we want to account
for unobserved/unobservable latent or hidden variables

• Some examples
– ‘personality’ in many psychological data
– ‘topic’ of a text
– ‘socio-economic class’ of a speaker

• Latent variables make learning difficult: since we cannot
observe them, how do we set the parameters?
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Learning with hidden variables
(Another) informal/quick introduction to the EM algorithm

• The EM algorithm (or its variants) is used in many
machine learning models with latent/hidden variables

1. Randomly initialize the parameters
2. Iterate until convergence:
E-step compute likelihood of the data, given the parameters
M-step re-estimate the parameters using the predictions based on

the E-step
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Hidden Markov models (HMM)
• HMMs are like Markov chains: probability of a state

depends only a limited history of previous states

P(qt|q1, . . . ,qt−1) = P(qt|qt−1)

• Unlike Markov chains, state sequence is hidden, they are
not the observations

• At every state qt, an HMM emits an output, ot, whose
probability depends only on the associated hidden state

• Given a state sequence q = q1, . . . ,qT , and the
corresponding observation sequence o = o1, . . . ,oT ,

P(o,q) = p(q1)

[
T∏
2

P(qt|qt−1)

]
T∏
1

P(ot|qt)
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Example: HMMs for POS tagging

S

Time

NOUN

flies

VERB

like

ADP

an

DET

arrow

NOUN

.

PUNC

• The tags are hidden
• Probability of a tag depends on the previous tag
• Probability of a word at a given state depends only on the

current tag
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HMMs: formal definition

An HMM is defined by
• A set of state Q = {q1, . . . ,qn}

• The set of possible observations O = {o1, . . . ,om}

• A transition probability matrix

A =

a11 a12 . . . a1n

...
... . . . ...

an1 an2 . . . ann

 aij is the probability of
transition from state qi to
state qj

• Initial probability distribution π = {P(q1), . . . ,P(qn)}

• Probability distributions of

B =

b11 b12 . . . b1n

...
... . . . ...

bm1 bm2 . . . bmn

 bij is the probability of
emiting output oi at state
qj
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A simple example

• Three states: N, V, D
• Four possible observations: a, b, c , d

A =

N V D[ ]
0.2 0.7 0.1 N
0.5 0.1 0.4 V
0.8 0.1 0.1 D

B =

N V D


0.1 0.1 0.5 a
0.4 0.5 0.1 b
0.4 0.3 0.1 c
0.1 0.1 0.3 d

π = (0.3, 0.1, 0.6)
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HMM transition diagram

a b
c d 0.20N

a b
c d
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V

a b
c d

0.10

D

0.70

0.40

0.80

0.50

0.10

0.10

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 34

Structure/sequence learning Markov chains Hidden variables Hidden Markov models Graphical models Alternative sequence models

Unfolding the states
HMM lattice (or trellis)

o1 o2 o3 … oT

N N N … N

V V V … V

D D D … D
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HMMs: three problems

Recognition/decoding
Calculating probability of state sequence, given an
observation sequence

P(q | o;M)

Evaluation
Calculating likelihood of a given sequence

P(o |M)

Learning
Given observation sequences, a set of states, and
(sometimes) corresponding state sequences,
estimate the parameters (π, A, B) of the HMM
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Assigning probabilities to observation sequences

P(o |M) =
∑
q

P(o,q |M)

• We need to sum over an exponential number of hidden
state sequences

• The solution is using a dynamic programming algorithm
– for each node of the trellis, store forward probabilities

αt,i =

N∑
j

αt−1,jP(qi|qj)P(oi|qi)
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Assigning probabilities to observation sequences
the forward algorithm

• Start with calculating all forward probabilities for t = 1

α1,i = πiP(o1|qi) for 1 ⩽ i ⩽ |Q|

store the α values
• For t > 1,

αt,i =

|Q|∑
j=1

αt−1,jP(qi|qj)P(ot|qi) for 1 ⩽ i ⩽ |Q|, 2 ⩽ t ⩽ n

• Likelihood of the observation is the sum of the forward
probabilities of the last step

P(o|M) =

|Q|∑
j=1

αn,j
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Forward algorithm
HMM lattice (or trellis)

x y … z

N N … N

V V … V

D D … D

α1,1

α1,2

α1,3

α2,2

α1,1 = πNbxN

α2,2 = α1,1aNVbyV + α1,2aVVbyV + α1,3aDVbyV
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Determining best sequence of latent variables
Decoding

• We often want to know the hidden state sequence given an
observation sequence, P(q | o;M)

– For example, given a sequence of tokens, find the most
likely POS tag sequence

• The problem (also the solution, the Viterbi algorithm) is
very similar to the forward algorithm

• Two major differences
– we store maximum likelihood leading to each node on the

lattice
– we also store backlinks, the previous state that leads to the

maximum likelihood
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HMM decoding problem

a b c … d

N N N … N

V V V … V

D D D … D
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Learning the parameters of an HMM
supervised case

• We want to estimate π, A, B
• If we have both the observation sequence o and the

corresponding state sequence, MLE estimate is

πi =
C(q0 → qi)∑
kC(q0 → qk)

aij =
C(qi → qj)∑
kC(qi → qk)

bij =
C(qi → oj)∑
kC(qi → ok)
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Learning the parameters of an HMM

• Given a training set with observation sequence(s) o and
state sequence q, we want to find θ = (π,A,B)

argmax
θ

P(o | q,θ)

• Typically solved using EM
1. Initialize θ
2. Repeat until convergence
E-step given θ, estimate the hidden state sequence
M-step given the estimated hidden states, use ‘expected counts’ to

update θ

• An efficient implementation of EM algorithm is called
Baum-Welch algorithm, or forward-backward algorithm
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HMM variations

• The HMMs we discussed so far are called ergodic HMMs:
all aij are non-zero

• For some applications, it is common to use HMMs with
additional restrictions

• A well known variant (Bakis HMM) allows only forward
transitions

1 2 3 4

• The emission probabilities can also be continuous, e.g.,
p(q|o) can be a normal distribution
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Directed graphical models: a brief divergence
Bayesian networks

• We saw earlier that joint distributions of multiple random
variables can be factorized different ways

P(x,y,z) = P(x)P(y|x)P(z|x,y) = P(y)P(x|y)P(z|x,y) = P(z)P(x|z)P(y|x,z)

• Graphical models display this relations in graphs,
– variables are denoted by nodes,
– the dependence between the variables are indicated by

edges
• Bayesian networks are directed acyclic graphs

x

y

z x

y

z x

y

z

• A variable (node) depends only on its parents
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Graphical models

• Graphical models define models involving multiple
random variables

• It is generally more intuitive (compared to corresponding
mathematical equations) to work with graphical models

• In a graphical model, by convention, the observed
variables are shaded

• Graphs can also be undirected, which are also called
Markov random fields
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HMM as a graphical model

q0 q1 q2 q3 q4 … qT

o1 o2 o3 o4 … oT
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MaxEnt HMMs (MEMM)

• In HMMs, we model P(q,o) = P(q)P(o | q)

• In many applications, we are only interested in P(q | o),
which we can calculate using the Bayes theorem

• But we can also model P(q | o) directly using a maximum
entropy model

P(qt | qt−1,ot) =
1

Z
e
∑

wifi(ot,qt)

fi are features – can be any useful feature
Z normalizes the probability distribution
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MEMMs as graphical models

q0 q1 q2 q3 q4 … qT

o1 o2 o3 o4 … oT

We can also have other dependencies as features, for example

q0 q1 q2 q3 q4 … qT

o1 o2 o3 o4 … oT
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Conditional random fields

q0 q1 q2 q3 q4 … qT

o1 o2 o3 o4 … oT

• A related model used in NLP is conditional random field
(CRF)

• CRFs are undirected models
• CRFs also model P(q | o) directly

P(q | o) =
1

Z

∏
t

f(qt−1,qt)g(qt,ot)
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Generative vs. discriminative models

• HMMs are generative models, they model the joint
distribution

– you can generate the output using HMMs
• MEMMs and CRFs are discriminative models they model

the conditional probability directly
• It is easier to add arbitrary features on discriminative

models
• In general: HMMs work well when the state sequence,
P(q), can be modeled well
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Summary

• In many problems, e.g., POS tagging, i.i.d. assumption is
wrong

• We need models that are aware of the effects of the
sequence (or structure in general) in the data

• HMMs are generative sequence models:
– Markov assumption between the hidden states (POS tags)
– Observations (words) are conditioned on the state (tag)

• There are other sequence learning methods
– Briefly mentioned: MEMM, CRF
– Coming soon: recurrent neural networks

Next
• Recurrent and convolutional networks
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