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Deep ANNs RNNs CNNs

Deep neural networks

x1 xm
…

• Deep neural networks (>2 hidden layers)
have recently been successful in many tasks

• They often use sparse connectivity and
shared weights

• We will focus on two important
architectures: recurrent and convolutional
networks
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Deep ANNs RNNs CNNs

Why deep networks?

• We saw that a feed-forward network with a single hidden layer is a universal
approximator

• However, this is a theoretical result – it is not clear how many units one may
need for the approximation

• Successive layers may learn different representations
• Deeper architectures have been found to be useful in many tasks
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Deep ANNs RNNs CNNs

Why now?

• Increased computational power, especially advances in graphical processing
unit (GPU) hardware

• Availability of large amounts of data
– mainly unlabeled data (more on this later)
– but also labeled data through ‘crowd sourcing’ and other sources

• Some new developments in theory and applications
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Recurrent neural networks

• Feed forward networks
– can only learn associations
– do not have memory of earlier inputs: they cannot handle sequences

• Recurrent neural networks are ANN solution for sequence learning
• This is achieved by recursive loops in the network

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 4 / 27



Deep ANNs RNNs CNNs

Recurrent neural networks
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• Recurrent neural networks are similar to the standard feed-forward networks

• They include loops that use previous output (of the hidden layers) as well as
the input

• Forward calculation is straightforward, learning becomes somewhat tricky
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Deep ANNs RNNs CNNs

A simple version: SRNs
Elman (1990)

InputContext units

Hidden units

Output units

cop
y

• The network keeps previous hidden
states (context units)

• The rest is just like a feed-forward
network

• Training is simple, but cannot learn
long-distance dependencies
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Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y
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Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links
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Learning in recurrent networks

x

h(1)

y(1)

W0

W1

W2

• We need to learn three sets of weights: W0, W1 and
W2

• Backpropagation in RNNs are at first not that
obvious

• The main difficulty is in propagating the error
through the recurrent connections
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Unrolling a recurrent network
Back propagation through time (BPTT)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)

Note: the weights with the same color are shared.
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Unstable gradients

• A common problem in deep networks is unstable gradients
• The patial derivatives with respect to weights in the early layers calculated

using the chain rule
• A long chain of multiplications may result in

– vanishing gradients if the values are in range (−1, 1)
– exploding gradients if absolute values larger than 1

• A practical solution for exploding gradients is called gradient clipping
• Solution to vanishing gradients is more involved (coming soon)
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RNN architectures
Many-to-many (e.g., POS tagging)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)
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RNN architectures
Many-to-one (e.g., document classification)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t)
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RNN architectures
Many-to-many with a delay (e.g., machine translation)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t−1) y(t)
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Bidirectional RNNs

x(t−1) x(t) x(t+1)

y(t−1) y(t) y(t−1)

Forward states … …

Backward states … …
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Unstable gradients revisited

• We noted earlier that the gradients may vanish or explode during
backpropagation in deep networks

• This is especially problematic for RNNs since the effective dept of the network
can be extremely large

• Although RNNs can theoretically learn long-distance dependencies, this is
affected by unstable gradients problem

• The most popular solution is to use gated recurrent networks
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Gated recurrent networks

σf σi tanh σo

×

×

× +

tanh

c(t-1)

h(t-1)

c(t)

h(t)

x(t)

• Most modern RNN architectures are ‘gated’
• The main idea is learning a mask that controls what to remember (or forget)

from previous hidden layers
• Two popular architectures are

– Long short term memory (LSTM) networks (above)
– Gated recurrent units (GRU)
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Convolutional networks

• Convolutional networks are particularly popular in image processing
applications

• They have also been used with success some NLP tasks
• Unlike feed-forward networks we have discussed so far,

– CNNs are not fully connected
– The hidden layer(s) receive input from only a set of neighboring units
– Some weights are shared

• A CNN learns features that are location invariant
• CNNs are also computationally less expensive compared to fully connected

networks
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Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi
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Example convolutions

• Blurring

1

16

1 2 1

2 4 2

1 2 1


• Edge detection −1 −1 −1

−1 8 −1

−1 −1 −1


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Learning convolutions

• Some filters produce features that are useful for classification (e.g., of images,
or sentences)

• In machine learning we want to learn the convolutions
• Typically, we learn multiple convolutions, each resulting in a different feature

map
• Repeated application of convolutions allow learning higher level features
• The last layer is typically a standard fully-connected classifier
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Convolution in neural networks

x1 x2

h2

x3

h3

x4

h4

x5
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w
1

w
0

w
-1

w
1

w
0

w
1

• Each hidden layer corresponds to a local window in the input
• Weights are shared: each convolution detects the same type of features
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Pooling

x1
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x2
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• Convolution is combined with pooling
• Pooling ‘layer’ simply calculates a statistic (e.g., max) over the convolution

layer
• Location invariance comes from pooling
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Pooling and location invariance

1 3 2 5 2

3 5 5

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in comparison to the
convolution layer
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Pooling and location invariance

4 2 1 3 2

4 3 3

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in comparison to the
convolution layer
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Padding in CNNs

• With successive layers of
convolution and pooling, the
later layers shrink

• One way to avoid this is padding
the input and hidden layers
with enough number of zeros
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CNNs: the bigger picture

• At each convolution/pooling step, we often
want to learn multiple feature maps

• After a (long) chain of hierarchical feature
maps, the final layer is typically a
fully-connected layer (e.g., softmax for
classification)

Convolution

Pooling
...

Fully connected

classifier output
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Real-world examples are complex
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The real-world ANNs tend to be complex
• Many layers (sometimes with repetition)
• Large amount of branching

* Diagram describes an image classification network, GoogLeNet (Szegedy et al. 2014).
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CNNs in natural language processing

• The use of CNNs in image applications is rather intiutive
– the first convolutional layer learns local features, e.g., edges

– successive layers learn more complex features that are combinations of these
features

• In NLP, it is a bit less straight-forward
– CNNs are typically used in combination with word vectors
– The convolutions of different sizes correspond to (word) n-grams of different

sizes
– Pooling picks important ‘n-grams’ as features for classification
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An example: sentiment analysis

not really worth seeingInput

Word vectors

Convolution

Feature maps

Pooling

Features

Classifier
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Summary

• Deep networks use more than one hidden layer
• Common (deep) ANN architectures include:
CNN shared feed-forward weights, location invariance
RNN sequence learning

Next:
• N-gram language models
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