
Statistical Natural Language Processing
Recurrent and convolutional networks

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2020



Deep ANNs RNNs CNNs

Deep neural networks

x1 xm
…

• Deep neural networks (>2 hidden layers)
have recently been successful in many tasks

• They often use sparse connectivity and
shared weights

• We will focus on two important
architectures: recurrent and convolutional
networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 1 / 27



Deep ANNs RNNs CNNs

Why deep networks?

• We saw that a feed-forward network with a single hidden layer is a universal
approximator

• However, this is a theoretical result – it is not clear how many units one may
need for the approximation

• Successive layers may learn different representations
• Deeper architectures have been found to be useful in many tasks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 2 / 27



Deep ANNs RNNs CNNs

Why deep networks?

• We saw that a feed-forward network with a single hidden layer is a universal
approximator

• However, this is a theoretical result – it is not clear how many units one may
need for the approximation

• Successive layers may learn different representations
• Deeper architectures have been found to be useful in many tasks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 2 / 27



Deep ANNs RNNs CNNs

Why deep networks?

• We saw that a feed-forward network with a single hidden layer is a universal
approximator

• However, this is a theoretical result – it is not clear how many units one may
need for the approximation

• Successive layers may learn different representations

• Deeper architectures have been found to be useful in many tasks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 2 / 27



Deep ANNs RNNs CNNs

Why deep networks?

• We saw that a feed-forward network with a single hidden layer is a universal
approximator

• However, this is a theoretical result – it is not clear how many units one may
need for the approximation

• Successive layers may learn different representations
• Deeper architectures have been found to be useful in many tasks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 2 / 27



Deep ANNs RNNs CNNs

Why now?

• Increased computational power, especially advances in graphical processing
unit (GPU) hardware

• Availability of large amounts of data
– mainly unlabeled data (more on this later)
– but also labeled data through ‘crowd sourcing’ and other sources

• Some new developments in theory and applications

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 3 / 27



Deep ANNs RNNs CNNs

Recurrent neural networks

• Feed forward networks
– can only learn associations
– do not have memory of earlier inputs: they cannot handle sequences

• Recurrent neural networks are ANN solution for sequence learning
• This is achieved by recursive loops in the network

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 4 / 27



Deep ANNs RNNs CNNs

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard feed-forward networks

• They include loops that use previous output (of the hidden layers) as well as
the input

• Forward calculation is straightforward, learning becomes somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 5 / 27



Deep ANNs RNNs CNNs

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard feed-forward networks
• They include loops that use previous output (of the hidden layers) as well as

the input

• Forward calculation is straightforward, learning becomes somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 5 / 27



Deep ANNs RNNs CNNs

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard feed-forward networks
• They include loops that use previous output (of the hidden layers) as well as

the input
• Forward calculation is straightforward, learning becomes somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 5 / 27



Deep ANNs RNNs CNNs

A simple version: SRNs
Elman (1990)

InputContext units

Hidden units

Output units

cop
y

• The network keeps previous hidden
states (context units)

• The rest is just like a feed-forward
network

• Training is simple, but cannot learn
long-distance dependencies

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 27



Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 27



Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y

not

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 27



Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y

really

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 27



Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y

worth

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 27



Deep ANNs RNNs CNNs

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier inputs affect the output through recurrent links

h1 h2 h3 h4

y

seeing

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 27



Deep ANNs RNNs CNNs

Learning in recurrent networks

x

h(1)

y(1)

W0

W1

W2

• We need to learn three sets of weights: W0, W1 and
W2

• Backpropagation in RNNs are at first not that
obvious

• The main difficulty is in propagating the error
through the recurrent connections

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 8 / 27



Deep ANNs RNNs CNNs

Unrolling a recurrent network
Back propagation through time (BPTT)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)

Note: the weights with the same color are shared.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 9 / 27



Deep ANNs RNNs CNNs

Unstable gradients

• A common problem in deep networks is unstable gradients
• The patial derivatives with respect to weights in the early layers calculated

using the chain rule
• A long chain of multiplications may result in

– vanishing gradients if the values are in range (−1, 1)
– exploding gradients if absolute values larger than 1

• A practical solution for exploding gradients is called gradient clipping
• Solution to vanishing gradients is more involved (coming soon)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 10 / 27



Deep ANNs RNNs CNNs

RNN architectures
Many-to-many (e.g., POS tagging)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 11 / 27



Deep ANNs RNNs CNNs

RNN architectures
Many-to-one (e.g., document classification)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 11 / 27



Deep ANNs RNNs CNNs

RNN architectures
Many-to-many with a delay (e.g., machine translation)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t−1) y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 11 / 27



Deep ANNs RNNs CNNs

Bidirectional RNNs

x(t−1) x(t) x(t+1)

y(t−1) y(t) y(t−1)

Forward states … …

Backward states … …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 12 / 27



Deep ANNs RNNs CNNs

Unstable gradients revisited

• We noted earlier that the gradients may vanish or explode during
backpropagation in deep networks

• This is especially problematic for RNNs since the effective dept of the network
can be extremely large

• Although RNNs can theoretically learn long-distance dependencies, this is
affected by unstable gradients problem

• The most popular solution is to use gated recurrent networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 13 / 27



Deep ANNs RNNs CNNs

Gated recurrent networks

σf σi tanh σo

×

×

× +

tanh

c(t-1)

h(t-1)

c(t)

h(t)

x(t)

• Most modern RNN architectures are ‘gated’
• The main idea is learning a mask that controls what to remember (or forget)

from previous hidden layers
• Two popular architectures are

– Long short term memory (LSTM) networks (above)
– Gated recurrent units (GRU)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 14 / 27



Deep ANNs RNNs CNNs

Convolutional networks

• Convolutional networks are particularly popular in image processing
applications

• They have also been used with success some NLP tasks
• Unlike feed-forward networks we have discussed so far,

– CNNs are not fully connected
– The hidden layer(s) receive input from only a set of neighboring units
– Some weights are shared

• A CNN learns features that are location invariant
• CNNs are also computationally less expensive compared to fully connected

networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 15 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Convolution in image processing
• Convolution is a common operation in image processing for effects like edge

detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 27



Deep ANNs RNNs CNNs

Example convolutions

• Blurring

1

16

1 2 1

2 4 2

1 2 1


• Edge detection −1 −1 −1

−1 8 −1

−1 −1 −1



Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 17 / 27



Deep ANNs RNNs CNNs

Learning convolutions

• Some filters produce features that are useful for classification (e.g., of images,
or sentences)

• In machine learning we want to learn the convolutions
• Typically, we learn multiple convolutions, each resulting in a different feature

map
• Repeated application of convolutions allow learning higher level features
• The last layer is typically a standard fully-connected classifier

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 27



Deep ANNs RNNs CNNs

Convolution in neural networks

x1 x2

h2

x3

h3

x4

h4

x5

w
-1 w

0

w
1

w
1

w
0

w
-1

w
1

w
0

w
1

• Each hidden layer corresponds to a local window in the input
• Weights are shared: each convolution detects the same type of features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 19 / 27



Deep ANNs RNNs CNNs

Pooling

x1

h1

x2

h2

h
′
1

x3

h3

h
′
2

x4

h4

h
′
3

x5

h5

Co
nv

ol
ut

io
n

Po
ol
in
g

• Convolution is combined with pooling
• Pooling ‘layer’ simply calculates a statistic (e.g., max) over the convolution

layer
• Location invariance comes from pooling

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 20 / 27



Deep ANNs RNNs CNNs

Pooling and location invariance

1 3 2 5 2

3 5 5

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in comparison to the
convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 21 / 27



Deep ANNs RNNs CNNs

Pooling and location invariance

2 1 3 2 5

3 3 5

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in comparison to the
convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 21 / 27



Deep ANNs RNNs CNNs

Pooling and location invariance

4 2 1 3 2

4 3 3

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in comparison to the
convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 21 / 27



Deep ANNs RNNs CNNs

Padding in CNNs

• With successive layers of
convolution and pooling, the
later layers shrink

• One way to avoid this is padding
the input and hidden layers
with enough number of zeros

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 22 / 27



Deep ANNs RNNs CNNs

Padding in CNNs

• With successive layers of
convolution and pooling, the
later layers shrink

• One way to avoid this is padding
the input and hidden layers
with enough number of zeros

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 22 / 27



Deep ANNs RNNs CNNs

CNNs: the bigger picture

• At each convolution/pooling step, we often
want to learn multiple feature maps

• After a (long) chain of hierarchical feature
maps, the final layer is typically a
fully-connected layer (e.g., softmax for
classification)

Convolution

Pooling
...

Fully connected

classifier output

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 23 / 27



Deep ANNs RNNs CNNs

Real-world examples are complex

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

The real-world ANNs tend to be complex
• Many layers (sometimes with repetition)
• Large amount of branching

* Diagram describes an image classification network, GoogLeNet (Szegedy et al. 2014).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 24 / 27



Deep ANNs RNNs CNNs

CNNs in natural language processing

• The use of CNNs in image applications is rather intiutive
– the first convolutional layer learns local features, e.g., edges

– successive layers learn more complex features that are combinations of these
features

• In NLP, it is a bit less straight-forward
– CNNs are typically used in combination with word vectors
– The convolutions of different sizes correspond to (word) n-grams of different

sizes
– Pooling picks important ‘n-grams’ as features for classification

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 25 / 27



Deep ANNs RNNs CNNs

An example: sentiment analysis

not really worth seeingInput

Word vectors

Convolution

Feature maps

Pooling

Features

Classifier

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 26 / 27



Deep ANNs RNNs CNNs

Summary

• Deep networks use more than one hidden layer
• Common (deep) ANN architectures include:
CNN shared feed-forward weights, location invariance
RNN sequence learning

Next:
• N-gram language models

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 27 / 27



Deep ANNs RNNs CNNs

Summary

• Deep networks use more than one hidden layer
• Common (deep) ANN architectures include:
CNN shared feed-forward weights, location invariance
RNN sequence learning

Next:
• N-gram language models

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 27 / 27


	Statistical Natural Language Processing
	Deep ANNs
	Deep neural networks
	Why deep networks?
	Why deep networks?
	Why deep networks?
	Why deep networks?
	Why now?

	RNNs
	Recurrent neural networks
	Recurrent neural networks
	Recurrent neural networks
	Recurrent neural networks
	A simple version: SRNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Learning in recurrent networks
	Unrolling a recurrent network
	Unstable gradients
	RNN architectures
	RNN architectures
	RNN architectures
	Bidirectional RNNs
	Unstable gradients revisited
	Gated recurrent networks

	CNNs
	Convolutional networks
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Example convolutions
	Learning convolutions
	Convolution in neural networks
	Pooling
	Pooling and location invariance
	Pooling and location invariance
	Pooling and location invariance
	Padding in CNNs
	Padding in CNNs
	CNNs: the bigger picture
	Real-world examples are complex
	CNNs in natural language processing
	An example: sentiment analysis

	
	Summary
	Summary



