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Why do we need syntactic parsing?

• Syntactic analysis is an intermediate step in (semantic) interpretation of
sentences
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As result, it is useful for applications like
question answering, information extraction, …

• (Statistical) parsers can also be used as language models for applications like
speech recognition and machine translation

• It can be used for grammar checking, and can be a useful tool for linguistic
research
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Ingredients of a parser

• A grammar
• An algorithm for parsing
• A method for ambiguity resolution
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Dependency vs. constituency

• Constituency grammars are based on units
formed by a group of lexical items (constituents
or phrases)

• Dependency grammars model binary
head–dependent relations between words

• Most of the theory of parsing is developed with
constituency grammars

• Dependency grammars has recently become
popular in CL
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Constituency grammars

• Constituency grammars are probably the
most studied grammars both in linguistics,
and computer science

• The main idea is that groups of words form
natural groups, or ‘constituents’, like noun
phrases or word phrases

• phrase structure grammars or context-free
grammars are often used as synonyms
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Note: many grammar formalisms posit a particular form of constituency grammars, we will not
focus on a particular grammar formalism here.
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Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols

N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of ‘rewrite’ rules of the form

αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R
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Example derivation

The example grammar:

S → NP VP VP → V NP
NP → John | Mary V → saw

• Phrase structure grammars derive a sentence with successive application of
rewrite rules.
S ⇒NP VP ⇒John VP ⇒John V NP ⇒John saw NP ⇒John saw Mary
or, S ∗⇒John saw Mary

• The intermediate forms that contain non-terminals are called sentential forms
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Constituency grammars and parsing

• Context-free grammars are parseable in O(n3) time complexity using
dynamic programming algorithms

• Mildly context-sensitive grammars can also be parsed in polynomial time
(O(n6))

• Polynomial time algorithms are not always fast enough in practice
– We often use approximate solutions with greedy search algorithms
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Where do grammars come from

• Grammars for (statistical) parsing can be either
– hand crafted (many years of expert effort)
– extracted from treebanks (which also require lots of effort)
– ‘induced’ from raw data (interesting, but not as successful)

• Current practice relies mostly on treebanks
• Hybrid approaches also exist
• Grammar induction is not common (for practical models) but exploiting

unlabled data is also a common trend
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Context free grammars
recap

• Context free grammars are sufficient for expressing most phenomena in
natural language syntax

• Most of the parsing theory (and practice) is build on parsing CF languages
• The context-free rules have the form

A→ α

where A is a single non-terminal symbol and α is a (possibly empty)
sequence of terminal or non-terminal symbols
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An example context-free grammar
S → NP VP
S → Aux NP VP
NP → Det N
NP → Prn
NP → NP PP
VP → V NP
VP → V
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | the

Derivation of sentence ‘she saw a duck’
S ⇒ NP VP
NP ⇒ Prn
Prn⇒ she
VP ⇒ V NP
V ⇒ saw
NP ⇒ Det N
Det⇒ a
N ⇒ duck
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Representations of a context-free parse tree
A parse tree:
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A history of derivations:
• S ⇒NP VP
• NP ⇒Prn
• Prn ⇒I
• VP ⇒V NP
• V ⇒saw
• NP ⇒Prnp N
• Prnp ⇒her
• N ⇒duck

A sequence with (labeled) brackets[
S

[
NP

[Prn I]
][

VP
[V saw]

[
NP

[
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her
]
[N duck]

]]]
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Parsing as search

• Parsing can be seen as search constrained by the grammar and the input
• Top down: start from S, find the derivations that lead to the sentence
• Bottom up: start from the sentence, find series of derivations (in reverse) that

leads to S

• Search can be depth first or breadth first for both cases
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Problems with search procedures

• Top-down search considers productions incompatible with the input, and
cannot handle left recursion

• Bottom-up search considers non-terminals that would never lead to S

• Repeated work because of backtracking→ The result is exponential time complexity in the length of the sentence

Some of these problems can be solved using
dynamic programming.
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CKY algorithm

• The CKY (Cocke–Younger–Kasami), or CYK, parsing algorithm is a dynamic
programming algorithm

• It processes the input bottom up, and saves the intermediate results on a chart
• Time complexity for recognition is O(n3) (with a space complexity of O(n2))
• It requires the CFG to be in Chomsky normal form (CNF)
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Chomsky normal form (CNF)

• A CFG is in CNF, if the rewrite rules are in one of the following forms
– A→ B C

– A→ a

where A, B, C are non-terminals and a is a terminal
• Any CFG can be converted to CNF
• Resulting grammar is weakly equivalent to the original grammar:

– it generates/accepts the same language
– but the derivations are different

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 73



Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Converting to CNF: example

• For rules with > 2 RHS symbols
S→Aux NP VP ⇒ S→Aux X

X→NP VP
• For rules with < 2 RHS symbols

NP→Prn ⇒ NP→ she | her

S → NP VP
S → Aux NP VP
NP → Det N
NP → Prn
NP → NP PP
VP → V NP
VP → V
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | the
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CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY demonstration: the chart

she saw her duck
0 1 2 3 4

NP, Prn

V, VP

Prn

V, N, NP

NP, S

VP

S

VP

SS

Chart is a 2-dimensional array, hence O(n2) space complexity.
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Parsing requires back pointers

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP, VP

S, S
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CKY summary

+ CKY avoids re-computing the analyses by storing the earlier analyses (of
sub-spans) in a table

− It still computes lower level constituents that are not allowd by the grammar
− CKY requires the grammar to be in CNF
• CKY has O(n3) recognition complexity
• For parsing we need to keep track of backlinks
• CKY can effciently store all possible parses in a chart
• Enumerating all possible parses have exponential complexity (worst case)
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Earley algorithm

• Earley algorithm is a top down parsing algorithm
• It allows arbitrary CFGs
• Keeps record of constituents that are

predicted using the grammar (top-down)
in-progress with partial evidence
completed based on input seen so far

at every position in the input string
• Time complexity is O(n3)
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Summary: context-free parsing algorithms

• Naive search for parsing is intractable
• Dynamic programming algorithms allow polynomial time recognition
• Parsing may still be exponential in the worse case
• Ambiguity: CKY or Earley parse tables can represent ambiguity, but cannot

say anything about which parse is the best
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Pretty little girl’s school (again)

Cartoon Theories of Linguistics, SpecGram Vol CLIII, No 4, 2008. http://specgram.com/CLIII.4/school.gif
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The task: choosing the most plausible parse
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Statistical parsing

• Find the most plausible parse of an input string given all possible parses
• We need a scoring function, for each parse, given the input
• We typically use probabilities for scoring, task becomes finding the parse (or

tree), t, given the input string w

tbest = argmax
t

P(t |w)

• Note that some ambiguities need a larger context than the sentence to be
resolved correctly
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Probabilistic context free grammars (PCFG)
A probabilistic context free grammar is specified by,
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α [p]

where A is a non-terminal, α is string of terminals and non-terminals, and p is
the probability associated with the rule

• The grammar accepts a sentence if it can be derived from Swith rules R1 . . .Rk

• The probability of a parse t of input stringw, P(t |w), corresponding to the
derivation R1 . . .Rk is

P(t |w) =
∏k

1 p(Ri)

where p(Ri) is the probability of the rule Ri
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PCFG example (1)
S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424
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PCFG example (2)
S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001693440
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PCFG example (2)
S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001693440
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Where do the rule probabilities come from?

• Supervised: estimate from a treebank, e.g., using maximum likelihood
estimation

• Unsupervised: expectation-maximization (EM)
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PCFGs - an interim summary

• PCFGs assign probabilities to parses based on CFG rules used during the
parse

• PCFGs assume that the rules are independent
• PCFGs are generative models, they assign probabilities to P(t,w), we can

calcuate the probability of a sentence by

P(w) =
∑
t

P(t,w) =
∑
t

P(t)
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PCFG chart parsing

• Both CKY and Earley algorithms can be adapted to PCFG parsing
• CKY matches PCFG parsing quite well

– to get the best parse, store the constituent with the highest probability in every
cell of the chart

– to get n-best best parse (beam search), store the n-best constituents in every cell
in the chart
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73



Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(Prn01) = P(Prn→ I) P(NP01) = P(NP→ I)
P(V12) = P(V→ saw) P(VP12) = P(VP→ saw)

. . .
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S02 ⇒ NP01VP12) = P(NP01)P(VP12)P(S→ NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP13 ⇒ V12NP23) = P(V12)P(NP23)P(VP→ V NP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(NP24 ⇒ Prn23N34) = P(Prn23)P(N34)P(Prn→ Prn N)
>

P(S24 ⇒ NP23VP34) = P(NP23)P(VP34)P(S→ NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S03 ⇒ NP01VP23) = P(NP01)P(VP13)P(S→ NP VP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP14 ⇒ V12NP24) = P(V12)P(NP24)P(VP→ V NP)
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S14 ⇒ NP01VP14) = P(NP01)P(VP14)P(S→ NP VP)
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S VP

S
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CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP
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What makes the difference in PCFG probabilities?
S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ VP PP 0.1
VP ⇒ V NP 0.8
V ⇒ saw 1.0
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ V NP 0.7
V ⇒ saw 1.0
NP⇒ NP PP 0.2
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

The parser’s choice would not be affected by lexical items!
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NP⇒ NP PP 0.2
NP⇒ D N 0.7
D ⇒ the 0.4
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What is wrong with PCFGs?

• In general: the assumption of independence
• The parents affect the correct choice for children, for example, in English

NP→ Prn is more likely in the subject position
• The lexical units affect the correct decision, for example:

– We eat the pizza with hands
– We eat the pizza with mushrooms

• Additionally: PCFGs use local context, difficult to incorporate
arbitrary/global features for disambiguation
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Solutions to PCFG problems

• Independence assumptions can be relaxed by either
– Parent annotation
– Lexicalization

• To condition on arbitrary/global information: discriminative models
• Most practical PCFG parsers are lexicalized, and often use a re-ranker

conditioning on other (global) features
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Lexicalizing PCFGs

• Replace non-terminal X with X(h), where h is a tuple with the lexical word
and its POS tag

• Now the grammar can capture (head-driven) lexical dependencies
• But number of nonterminals grow by |V |× |T |

• Estimation becomes difficult (many rules, data sparsity)
• Some treebanks (e.g., Penn Treebank) do not annotate heads, they are

automatically annotated (based on heuristics)
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Example lexicalized derivation
TOP

S(bought,VBD)

NP(week,NN)

JJ(last,JJ)

Last

NN(week,NN)

week

NP(IBM,NNP)

NNP(IBM,NNP)

IBM

VP(bought,VBD)

VBD(bought,VBD)

bought

NP(Lotus,NNP)

NPN(Lotus,NNP)

Lotus

Example rules:
TOP → S(bought,VBD)
S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
VP(bought,VBD) → VBD(bought,VBD) NP(Lotus,NNP)
JJ(last,JJ) → Last
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Evaluating the parser output

• A parser can be evaluated
extrinsically based on its effect on a task (e.g., machine translation) where it

is used
intrinsically based on the match with ideal parsing

• The typically evaluation (intrinsic) is based on a gold standard (GS)
• Exact match is often

– very difficult to achieve (think about a 50-word newspaper sentence)
– not strictly necessary (recovering parts of the parse can be useful for many

purposes)
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Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):
precision the ratio of correctly predicted nodes

recall the nodes (in GS) that are predicted correctly
f-measure harmonic mean of precision and recall

(
2×precision×recall
precision+recall

)
• The measures can be

unlabled the spans of the nodes are expected to match
labeled the node label should also match

• Crossing brackets (or average non-crossing brackets)
( We ( saw ( them ( with binoculars ))))
( We (( saw them ) ( with binoculars )))

• Measures can be averaged per constituent (micro average), or over sentences
(macro average)
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PARSEVAL example
Gold standard:

S

NP

N

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Parser output:
S

NP

N

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

precision =
6

7
recall = 6

7
f-measure =

6

7
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Problems with PARSEVAL metrics

• PARSEVAL metrics favor certain type of structures
– Results are surprisingly well for flat tree structures (e.g., Penn treebank)
– Results of some mistakes are catastrophic (e.g., low attachment)

• Not all mistakes are equally important for semantic distinctions
• Some alternatives:

– Extrinsic evaluation
– Evaluation based on extracted dependencies
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Dependency grammars

• Dependency grammars gained popularity in (particularly in computational)
linguistics rather recently, but their roots can be traced back to a few thousand
years

• The main idea is capturing the relation between the words, rather than
grouping them into (abstract) constituents

John saw Mary

subject object
root

Note: like constituency grammars, we will not focus on a particular dependency formalism, but
discuss it in general in relation to parsing.
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Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric binary relations
between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience
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Projective vs. non-projective dependencies

• If a dependency graph has no crossing edges, it is said to be projective,
otherwise non-projective

• Non-projectivity stems from long-distance dependencies and free word order

A non-projective tree example:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD
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Parsing with dependency grammars

• Projective parsing can be done in polynomial time
• Non-projective parsing is NP-hard (without restrictions)
• For both, it is a common practice to use greedy (e.g., linear time) algorithms
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Dependency grammar: definition

A dependency grammar is a tuple (V,A)

V is a set of nodes corresponding to the (syntactic) words (we implicitly assume
that words have indexes)

A is a set of arcs of the form (wi, r,wj) where
wi ∈ V is the head
r is the type of the relation (arc label)

wj ∈ V is the dependent
This defines a directed graph.
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Dependency grammars: common assumptions

• Every word has a single head
• The dependency graphs are acyclic
• The graph is connected
• With these assumptions, the representation is a tree
• Note that these assumptions are not universal but common for dependency

parsing
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Dependency parsing

• Dependency parsing has many similarities with context-free parsing (e.g.,
trees)

• They also have some different properties (e.g., number of edges and depth of
trees are limited)

• Dependency parsing can be
– grammar-driven (hand crafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

• There are two main approaches:
Graph-based similar to context-free parsing, search for the best tree structure
Transition-based similar to shift-reduce parsing (used for programming

language parsing), but using greedy search for the best
transition sequence
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Transition based parsing

• Inspired by shift-reduce parsing, single pass over the input
• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on top of the stack
Right-Arc: mark current word as a dependent of the word on top of the stack

Shift: push the current word to the stack
• Algorithm terminates when all words in the input are processed
• The transitions are not naturally deterministic, best transition is predicted

using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)
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A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ|wi,wj|β,A)⇒ (σ ,wj|β,A ∪ {(wj, r,wi)})

• pop wi

• add arc (wj, r,wi) to A

• keep wj in the buffer
Right-Arcr: (σ|wi,wj|β,A)⇒ (σ ,wi|β,A ∪ {(wi, r,wj)})

• pop wi

• add arc (wi, r,wj) to A

• move wi to the buffer (wj is removed from the buffer)
Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• push wj to the stack (remove it from the buffer)
(Kübler, McDonald, and Nivre 2009, p.23)
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(nsubj)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case
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ac
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Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root
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obj
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Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(obj)

Note: we need Shift for NP attachment.Note: We need Shift for NP attachment.

root

nsubj

obj

obl

case
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Making transition decisions

• In shift-reduce parsing the actions are deterministic
• In transition-based dependency parsing, we need to choose among all

possible transitions
• The typical method is to train a (discriminative) classifier on features

extracted from gold-standard transition sequences
• Almost any machine learning method is applicable. Common choices include

– Memory-based learning
– Support vector machines
– (Deep) neural networks
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Features for transition-based parsing

• The features come from certain ‘addresses’ in the parser configuration, for
example

– The word at the stack top (or nth from stack top)
– The first/second word on the buffer
– Right/left dependents of the word on top of the stack/buffer

• For each possible ‘address’, we can make use of features like
– Word form, lemma, POS tag, morphological features, word embeddings
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations and in some
configurations the values may be missing
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The training data
• We want features like,

– lemma[Stack] = duck
– POS[Stack] = NOUN
– ...

• But treebank gives us:

� �
1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 obj
7 . . PUNCT . _ 1 punct� �

• The treebank has the outcome of the parser, but not the features we need
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The training data

• The features for transition-based parsing have to be from parser configurations
• The data (treebanks) need to be preprocessed for obtaining the training data
• Construct a transition sequence by parsing the sentences, and using treebank

annotations (the set A) as an ‘oracle’
• Decide for

Left-Arcr if (β[0], r,σ[0]) ∈ A

Right-Arcr if (σ[0], r,β[0]) ∈ A

and all dependents of β[0] are attached
Shift otherwise

• There may be multiple sequences that yield the same dependency tree, the
above defines a ‘canonical’ transition sequence
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Non-projective parsing

• The transition-based parsing we defined so far works only for projective
dependencies

• One way to achieve (limited) non-projective parsing is to add special
Left-Arc and Right-Arc transitions to/from non-top words from the stack

• Another method is pseudo-projective parsing:
– preprocessing to ‘projectivize’ the trees before training

• The idea is to attach the dependents to a higher level head that preserves
projectivity, while marking it on the new dependency label

– postprocessing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies
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Pseudo-projective parsing

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Non-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD

Pseudo-projective tree:
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Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features
• We need some extra work for generating gold-standard transition sequences

from treebanks
• Early errors propagate, transition-based parsers make more mistakes on

long-distance dependencies
• The greedy algorithm can be extended to beam search for better accuracy

(still linear time complexity)
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Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

Eisner 1996; McDonald et al. 2005
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MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph
which is a tree and traverses all the nodes

• For fully-connected graphs, the number of spanning
trees are exponential in the size of the graph

• The problem is well studied
• There are efficient algorithms for enumerating and

finding the optimum spanning tree on weighted
graphs
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MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm that finds the
minimum/maximum spanning tree (MST) of a fully connected graph
(Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree
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MST example

I saw

her duck
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For each node select the incoming arc with highest weight
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Detect cycles, contract them to a ‘single node’
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Pick the best arc into the combined node, break the cycle
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Once all cycles are eliminated, the result is the MST
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Properties of the MST parser

• The MST parser is non-projective
• There is an alrgorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies (but still polynomial)
• The weights/parameters are associated with edges (often called

‘arc-factored’)
• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features
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CKY for dependency parsing

• The CKY algorithm can be adapted to projective dependency parsing
• For a naive implementation the complexity increases drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and right dependents of a
head are independently generated reduces the comlexity to O(n3)

(Eisner 1997)
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Non-local features

• The graph-based dependency parsers use edge-based features
• This limits the use of more global features
• Some extensions for using ‘more’ global features are possible
• This often leads non-projective parsing to become intractable
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External features

• For both types of parsers, one can obtain features that are based on
unsupervised methods such as

– clustering
– dense vector representations (embeddings)
– alignment/transfer from bilingual corpora/treebanks

(Koo, Carreras, and Collins 2008)
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Errors from different parsers

• Different parsers make different errors
– Transition based parsers do well on local arcs, worse on long-distance arcs
– Graph based parsers tend to do better on long-distance dependencies

• Parser combination is a good way to combine the powers of different models.
Two common methods

– Majority voting: train parsers separately, use the weighted combination of their
results

– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)
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Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are identified correctly.

– Labeled attachment score (LAS) requires the dependency type to match
– Unlabeled attachment score (UAS) disregards the dependency type

• Precision/recall/F-measure often used for quantifying success on identifying a
particular dependency type

precision is the ratio of correctly identified dependencies (of a certain type)
recall is the ratio of dependencies in the gold standard that parser predicted correctly

f-measure is the harmonic mean of precision and recall
(

2×precision×recall
precision+recall

)
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Evaluation example

I saw her duck
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Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)
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Dependency parsing: summary
• Dependency relations are often easier to interpret
• It is also claimed that dependency parsers are more suitable for parsing

free-word-order languages
• Dependency relations are between words, no phrases or other abstract nodes

are postulated
• Two general methods:

transition based greedy search, non-local features, fast, less accurate
graph based exact search, local features, slower, accurate (within model

limitations)
• Combination of different methods often result in better performance
• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better machine learning

methods (mainly using neural networks)
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Next week

Mon/Wed Wrap-up/summary
Fri Exam
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Where to go from here?

• Textbook includes good coverage of constituency grammars and parsing,
online 3rd edition includes a chapter on dependency parsing as well

• The book by Kübler, McDonald, and Nivre (2009) is an accessible
introduction to (statistical) dependency parsing

• For more on linguistic and mathematical foundations of parsing:
– Müller (2016) is a new open-source text book on Grammar formalisms.
– Aho and Ullman (1972) is the classical reference (available online) for parsing

(programming languages) and also includes discussion of grammar classes in
the Chomsky hierarchy. A more up-to-date alternative is Aho, Lam, et al. (2007).

– There is a brief introductory section on dependency grammars in Kübler,
McDonald, and Nivre (2009), for a classical reference see tesniere2015, English
translation of the original version (Tesnière 1959).
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Pointers to some treebanks
Treebanks are the main resource for statistical parsing. A few treebank-related
resources to have a look at until next time:

• Universal dependencies project, documentation, treebanks:
http://universaldependencies.org/

• Tübingen treebanks:
TüBa-D/Z written German
TüBa-D/S spoken German
TüBa-E/S spoken English
TüBa-J/S spoken Japanese

available from http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora.html
• TüNDRA - a treebank search and visualization application with the above

treebanks and few more
– Main version:

https://weblicht.sfs.uni-tuebingen.de/Tundra/
– New version (beta):

https://weblicht.sfs.uni-tuebingen.de/tundra-beta/
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CKY algorithm

function CKY(words,grammar)
for j ← 1 to Length(words) do

table[j− 1, j]← {A|A→ words[j] ∈ grammar}

for i ← j− 1 downto 0 do
for k ← i+ 1 to j− 1 do

table[i, j]← table[i, j] ∪
{A|A→ BC ∈ grammar and

B ∈ table[i,k] and
C ∈ table[k, j]}

return table
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Even more examples
(newspaper headlines)

• FARMER BILL DIES IN HOUSE
• TEACHER STRIKES IDLE KIDS
• SQUAD HELPS DOG BITE VICTIM
• BAN ON NUDE DANCING ON GOVERNOR’S DESK
• PROSTITUTES APPEAL TO POPE
• KIDS MAKE NUTRITIOUS SNACKS
• DRUNK GETS NINE MONTHS IN VIOLIN CASE
• MINERS REFUSE TO WORK AFTER DEATH

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.4



Another CKY demonstration: spans

she saw a duck

0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5
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