
Statistical Natural Language Processing
Statistical Parsing

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2020

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

This lecture is about
NP

NP

JJ

statistical

NN

constituency

CC

and

NN

dependency

NN

parsing

PP

IN

of

NP

NN

natural

NN

languages

nmod

amod
case

nmod

conj

ccamod

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 1 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Why do we need syntactic parsing?

• Syntactic analysis is an intermediate step in (semantic) interpretation of
sentences

S

NP

John

VP

V

saw

NP

Mary

S

NP

Mary

VP

V

saw

NP

John

As result, it is useful for applications like
question answering, information extraction, …

• (Statistical) parsers can also be used as language models for applications like
speech recognition and machine translation

• It can be used for grammar checking, and can be a useful tool for linguistic
research

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 2 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Ingredients of a parser

• A grammar
• An algorithm for parsing
• A method for ambiguity resolution

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 3 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency vs. constituency

• Constituency grammars are based on units
formed by a group of lexical items (constituents
or phrases)

• Dependency grammars model binary
head–dependent relations between words

• Most of the theory of parsing is developed with
constituency grammars

• Dependency grammars has recently become
popular in CL

S

NP

John

VP

V

saw

NP

Mary

John saw Mary

subject object
root

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 4 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Constituency grammars

• Constituency grammars are probably the
most studied grammars both in linguistics,
and computer science

• The main idea is that groups of words form
natural groups, or ‘constituents’, like noun
phrases or word phrases

• phrase structure grammars or context-free
grammars are often used as synonyms

S

NP

John

VP

V

saw

NP

Mary

Note: many grammar formalisms posit a particular form of constituency grammars, we will not
focus on a particular grammar formalism here.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 5 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols

N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of ‘rewrite’ rules of the form

αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R

S

NP

John

VP

V

saw

NP

Mary

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols

S ∈ N is a distinguished start symbol
R is a set of ‘rewrite’ rules of the form

αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R

S

NP

John

VP

V

saw

NP

Mary

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol

R is a set of ‘rewrite’ rules of the form
αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R

S

NP

John

VP

V

saw

NP

Mary

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of ‘rewrite’ rules of the form

αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R

S

NP

John

VP

V

saw

NP

Mary

S → NP VP VP → V NP
NP → John | Mary V → saw

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Formal definition

A phrase structure grammar is a tuple (Σ, N, S, R)
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of ‘rewrite’ rules of the form

αAβ→ γ for A ∈ N α,β,γ ∈ Σ ∪N

• The grammar accepts a sentence if it can be
derived from S with the rewrite rules R

S

NP

John

VP

V

saw

NP

Mary

S → NP VP VP → V NP
NP → John | Mary V → saw

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 6 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Example derivation

The example grammar:

S → NP VP VP → V NP
NP → John | Mary V → saw

• Phrase structure grammars derive a sentence with successive application of
rewrite rules.
S ⇒NP VP ⇒John VP ⇒John V NP ⇒John saw NP ⇒John saw Mary
or, S ∗⇒John saw Mary

• The intermediate forms that contain non-terminals are called sentential forms

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Constituency grammars and parsing

• Context-free grammars are parseable in O(n3) time complexity using
dynamic programming algorithms

• Mildly context-sensitive grammars can also be parsed in polynomial time
(O(n6))

• Polynomial time algorithms are not always fast enough in practice
– We often use approximate solutions with greedy search algorithms

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 8 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Where do grammars come from

• Grammars for (statistical) parsing can be either
– hand crafted (many years of expert effort)
– extracted from treebanks (which also require lots of effort)
– ‘induced’ from raw data (interesting, but not as successful)

• Current practice relies mostly on treebanks
• Hybrid approaches also exist
• Grammar induction is not common (for practical models) but exploiting

unlabled data is also a common trend

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 9 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Context free grammars
recap

• Context free grammars are sufficient for expressing most phenomena in
natural language syntax

• Most of the parsing theory (and practice) is build on parsing CF languages
• The context-free rules have the form

A→ α

where A is a single non-terminal symbol and α is a (possibly empty)
sequence of terminal or non-terminal symbols

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 10 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

An example context-free grammar
S → NP VP
S → Aux NP VP
NP → Det N
NP → Prn
NP → NP PP
VP → V NP
VP → V
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | the

Derivation of sentence ‘she saw a duck’
S ⇒ NP VP
NP ⇒ Prn
Prn⇒ she
VP ⇒ V NP
V ⇒ saw
NP ⇒ Det N
Det⇒ a
N ⇒ duck

S

NP

Prn

she

VP

V

saw

NP

Det

a

N

duck

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 11 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Representations of a context-free parse tree
A parse tree:
S

NP

Prn

I

VP

V

saw

NP

Prnp

her

N

duck

A history of derivations:
• S ⇒NP VP
• NP ⇒Prn
• Prn ⇒I
• VP ⇒V NP
• V ⇒saw
• NP ⇒Prnp N
• Prnp ⇒her
• N ⇒duck

A sequence with (labeled) brackets[
S

[
NP

[Prn I]
][

VP
[V saw]

[
NP

[
Prnp

her
]
[N duck]

]]]
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 12 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Parsing as search

• Parsing can be seen as search constrained by the grammar and the input
• Top down: start from S, find the derivations that lead to the sentence
• Bottom up: start from the sentence, find series of derivations (in reverse) that

leads to S

• Search can be depth first or breadth first for both cases

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 13 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Problems with search procedures

• Top-down search considers productions incompatible with the input, and
cannot handle left recursion

• Bottom-up search considers non-terminals that would never lead to S

• Repeated work because of backtracking→ The result is exponential time complexity in the length of the sentence

Some of these problems can be solved using
dynamic programming.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 14 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY algorithm

• The CKY (Cocke–Younger–Kasami), or CYK, parsing algorithm is a dynamic
programming algorithm

• It processes the input bottom up, and saves the intermediate results on a chart
• Time complexity for recognition is O(n3) (with a space complexity of O(n2))
• It requires the CFG to be in Chomsky normal form (CNF)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 15 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Chomsky normal form (CNF)

• A CFG is in CNF, if the rewrite rules are in one of the following forms
– A→ B C

– A→ a

where A, B, C are non-terminals and a is a terminal
• Any CFG can be converted to CNF
• Resulting grammar is weakly equivalent to the original grammar:

– it generates/accepts the same language
– but the derivations are different

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 16 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Converting to CNF: example

• For rules with > 2 RHS symbols
S→Aux NP VP ⇒ S→Aux X

X→NP VP
• For rules with < 2 RHS symbols

NP→Prn ⇒ NP→ she | her

S → NP VP
S → Aux NP VP
NP → Det N
NP → Prn
NP → NP PP
VP → V NP
VP → V
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | the

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 17 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration
recognition example

0 41 2 3

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 18 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY demonstration: the chart

she saw her duck
0 1 2 3 4

NP, Prn

V, VP

Prn

V, N, NP

NP, S

VP

S

VP

SS

Chart is a 2-dimensional array, hence O(n2) space complexity.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 19 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Parsing requires back pointers

she saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP, VP

S, S

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 20 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY summary

+ CKY avoids re-computing the analyses by storing the earlier analyses (of
sub-spans) in a table

− It still computes lower level constituents that are not allowd by the grammar
− CKY requires the grammar to be in CNF
• CKY has O(n3) recognition complexity
• For parsing we need to keep track of backlinks
• CKY can effciently store all possible parses in a chart
• Enumerating all possible parses have exponential complexity (worst case)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 21 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Earley algorithm

• Earley algorithm is a top down parsing algorithm
• It allows arbitrary CFGs
• Keeps record of constituents that are

predicted using the grammar (top-down)
in-progress with partial evidence
completed based on input seen so far

at every position in the input string
• Time complexity is O(n3)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 22 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Summary: context-free parsing algorithms

• Naive search for parsing is intractable
• Dynamic programming algorithms allow polynomial time recognition
• Parsing may still be exponential in the worse case
• Ambiguity: CKY or Earley parse tables can represent ambiguity, but cannot

say anything about which parse is the best

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 23 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Pretty little girl’s school (again)

Cartoon Theories of Linguistics, SpecGram Vol CLIII, No 4, 2008. http://specgram.com/CLIII.4/school.gif

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 24 / 73

http://specgram.com/CLIII.4/08.phlogiston.cartoon.zhe.html
http://specgram.com/CLIII.4/school.gif

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

The task: choosing the most plausible parse

S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 25 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

The task: choosing the most plausible parse

S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 25 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Statistical parsing

• Find the most plausible parse of an input string given all possible parses
• We need a scoring function, for each parse, given the input
• We typically use probabilities for scoring, task becomes finding the parse (or

tree), t, given the input string w

tbest = argmax
t

P(t |w)

• Note that some ambiguities need a larger context than the sentence to be
resolved correctly

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 26 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Probabilistic context free grammars (PCFG)
A probabilistic context free grammar is specified by,
Σ is a set of terminal symbols
N is a set of non-terminal symbols
S ∈ N is a distinguished start symbol
R is a set of rules of the form

A→ α [p]

where A is a non-terminal, α is string of terminals and non-terminals, and p is
the probability associated with the rule

• The grammar accepts a sentence if it can be derived from Swith rules R1 . . .Rk

• The probability of a parse t of input stringw, P(t |w), corresponding to the
derivation R1 . . .Rk is

P(t |w) =
∏k

1 p(Ri)

where p(Ri) is the probability of the rule Ri

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 27 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFG example (1)
S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 28 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFG example (1)
S

NP

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.9× 1.0× 0.2× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.000263424

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 28 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFG example (2)
S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001693440

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 29 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFG example (2)
S

NP

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

S → NP VP 1.0
NP→ D N 0.7
NP→ NP PP 0.2
NP→We 0.1
VP → V NP 0.9
VP → VP PP 0.1
PP → P NP 1.0
N → hat 0.2
N → man 0.8
V → saw 1.0
P → with 1.0
D → a 0.6
D → the 0.4

P(t) = 1.0× 0.1× 0.1× 0.9× 1.0× 0.7× 0.4× 0.8× 1.0× 1.0× 0.7× 0.6× 0.2

= 0.0001693440

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 29 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Where do the rule probabilities come from?

• Supervised: estimate from a treebank, e.g., using maximum likelihood
estimation

• Unsupervised: expectation-maximization (EM)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 30 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFGs - an interim summary

• PCFGs assign probabilities to parses based on CFG rules used during the
parse

• PCFGs assume that the rules are independent
• PCFGs are generative models, they assign probabilities to P(t,w), we can

calcuate the probability of a sentence by

P(w) =
∑
t

P(t,w) =
∑
t

P(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 31 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PCFG chart parsing

• Both CKY and Earley algorithms can be adapted to PCFG parsing
• CKY matches PCFG parsing quite well

– to get the best parse, store the constituent with the highest probability in every
cell of the chart

– to get n-best best parse (beam search), store the n-best constituents in every cell
in the chart

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 32 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(Prn01) = P(Prn→ I) P(NP01) = P(NP→ I)
P(V12) = P(V→ saw) P(VP12) = P(VP→ saw)

. . .
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S02 ⇒ NP01VP12) = P(NP01)P(VP12)P(S→ NP VP)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP13 ⇒ V12NP23) = P(V12)P(NP23)P(VP→ V NP)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(NP24 ⇒ Prn23N34) = P(Prn23)P(N34)P(Prn→ Prn N)
>

P(S24 ⇒ NP23VP34) = P(NP23)P(VP34)P(S→ NP VP)
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S03 ⇒ NP01VP23) = P(NP01)P(VP13)P(S→ NP VP)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S ?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(VP14 ⇒ V12NP24) = P(V12)P(NP24)P(VP→ V NP)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

?

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

P(S14 ⇒ NP01VP14) = P(NP01)P(VP14)P(S→ NP VP)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for PCFG parsing

0 41 2 3

I saw her duck

Prn, NP V, VP Prn, NP N, V, VP

S VP NP, S

S VP

S

S → NP VPVP → V NPNP → Prn N
S → NP VP
S → NP VPVP → V NP
VP → V S
S → NP VP

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 33 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

What makes the difference in PCFG probabilities?
S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ VP PP 0.1
VP ⇒ V NP 0.8
V ⇒ saw 1.0
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ V NP 0.7
V ⇒ saw 1.0
NP⇒ NP PP 0.2
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

The parser’s choice would not be affected by lexical items!

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 34 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

What makes the difference in PCFG probabilities?
S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ VP PP 0.1
VP ⇒ V NP 0.8
V ⇒ saw 1.0
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

S ⇒ NP VP 1.0
NP⇒We 0.1
VP ⇒ V NP 0.7
V ⇒ saw 1.0
NP⇒ NP PP 0.2
NP⇒ D N 0.7
D ⇒ the 0.4
N ⇒ man 0.8
PP ⇒ P NP 1.0
P ⇒ with 1.0
NP⇒ D N 0.7
D ⇒ a 0.6
N ⇒ hat 0.2

The parser’s choice would not be affected by lexical items!

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 34 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

What is wrong with PCFGs?

• In general: the assumption of independence
• The parents affect the correct choice for children, for example, in English

NP→ Prn is more likely in the subject position
• The lexical units affect the correct decision, for example:

– We eat the pizza with hands
– We eat the pizza with mushrooms

• Additionally: PCFGs use local context, difficult to incorporate
arbitrary/global features for disambiguation

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 35 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Solutions to PCFG problems

• Independence assumptions can be relaxed by either
– Parent annotation
– Lexicalization

• To condition on arbitrary/global information: discriminative models
• Most practical PCFG parsers are lexicalized, and often use a re-ranker

conditioning on other (global) features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 36 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Lexicalizing PCFGs

• Replace non-terminal X with X(h), where h is a tuple with the lexical word
and its POS tag

• Now the grammar can capture (head-driven) lexical dependencies
• But number of nonterminals grow by |V |× |T |

• Estimation becomes difficult (many rules, data sparsity)
• Some treebanks (e.g., Penn Treebank) do not annotate heads, they are

automatically annotated (based on heuristics)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 37 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Example lexicalized derivation
TOP

S(bought,VBD)

NP(week,NN)

JJ(last,JJ)

Last

NN(week,NN)

week

NP(IBM,NNP)

NNP(IBM,NNP)

IBM

VP(bought,VBD)

VBD(bought,VBD)

bought

NP(Lotus,NNP)

NPN(Lotus,NNP)

Lotus

Example rules:
TOP → S(bought,VBD)
S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD)
VP(bought,VBD) → VBD(bought,VBD) NP(Lotus,NNP)
JJ(last,JJ) → Last

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 38 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluating the parser output

• A parser can be evaluated
extrinsically based on its effect on a task (e.g., machine translation) where it

is used
intrinsically based on the match with ideal parsing

• The typically evaluation (intrinsic) is based on a gold standard (GS)
• Exact match is often

– very difficult to achieve (think about a 50-word newspaper sentence)
– not strictly necessary (recovering parts of the parse can be useful for many

purposes)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 39 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):
precision the ratio of correctly predicted nodes

recall the nodes (in GS) that are predicted correctly
f-measure harmonic mean of precision and recall

(
2×precision×recall
precision+recall

)
• The measures can be

unlabled the spans of the nodes are expected to match
labeled the node label should also match

• Crossing brackets (or average non-crossing brackets)
(We (saw (them (with binoculars))))
(We ((saw them) (with binoculars)))

• Measures can be averaged per constituent (micro average), or over sentences
(macro average)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 40 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

PARSEVAL example
Gold standard:

S

NP

N

We

VP

V

saw

NP

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

Parser output:
S

NP

N

We

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

a

N

hat

precision =
6

7
recall = 6

7
f-measure =

6

7

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 41 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Problems with PARSEVAL metrics

• PARSEVAL metrics favor certain type of structures
– Results are surprisingly well for flat tree structures (e.g., Penn treebank)
– Results of some mistakes are catastrophic (e.g., low attachment)

• Not all mistakes are equally important for semantic distinctions
• Some alternatives:

– Extrinsic evaluation
– Evaluation based on extracted dependencies

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 42 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

• Dependency grammars gained popularity in (particularly in computational)
linguistics rather recently, but their roots can be traced back to a few thousand
years

• The main idea is capturing the relation between the words, rather than
grouping them into (abstract) constituents

John saw Mary

subject object
root

Note: like constituency grammars, we will not focus on a particular dependency formalism, but
discuss it in general in relation to parsing.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 43 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric binary relations
between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 44 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric binary relations

between syntactic units

• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 44 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric binary relations

between syntactic units
• The links (relations) have labels (dependency types)

• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 44 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric binary relations

between syntactic units
• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the other as dependent

• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 44 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars

John saw Marry

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric binary relations

between syntactic units
• The links (relations) have labels (dependency types)
• Each relation defines one of the words as the head and the other as dependent
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 44 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Projective vs. non-projective dependencies

• If a dependency graph has no crossing edges, it is said to be projective,
otherwise non-projective

• Non-projectivity stems from long-distance dependencies and free word order

A non-projective tree example:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 45 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Projective vs. non-projective dependencies

• If a dependency graph has no crossing edges, it is said to be projective,
otherwise non-projective

• Non-projectivity stems from long-distance dependencies and free word order
A non-projective tree example:

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 45 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Parsing with dependency grammars

• Projective parsing can be done in polynomial time
• Non-projective parsing is NP-hard (without restrictions)
• For both, it is a common practice to use greedy (e.g., linear time) algorithms

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 46 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammar: definition

A dependency grammar is a tuple (V,A)

V is a set of nodes corresponding to the (syntactic) words (we implicitly assume
that words have indexes)

A is a set of arcs of the form (wi, r,wj) where
wi ∈ V is the head
r is the type of the relation (arc label)

wj ∈ V is the dependent
This defines a directed graph.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 47 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency grammars: common assumptions

• Every word has a single head
• The dependency graphs are acyclic
• The graph is connected
• With these assumptions, the representation is a tree
• Note that these assumptions are not universal but common for dependency

parsing

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 48 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency parsing

• Dependency parsing has many similarities with context-free parsing (e.g.,
trees)

• They also have some different properties (e.g., number of edges and depth of
trees are limited)

• Dependency parsing can be
– grammar-driven (hand crafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

• There are two main approaches:
Graph-based similar to context-free parsing, search for the best tree structure
Transition-based similar to shift-reduce parsing (used for programming

language parsing), but using greedy search for the best
transition sequence

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 49 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing

• Inspired by shift-reduce parsing, single pass over the input
• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on top of the stack
Right-Arc: mark current word as a dependent of the word on top of the stack

Shift: push the current word to the stack
• Algorithm terminates when all words in the input are processed
• The transitions are not naturally deterministic, best transition is predicted

using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 50 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ|wi,wj|β,A)⇒ (σ ,wj|β,A ∪ {(wj, r,wi)})

• pop wi

• add arc (wj, r,wi) to A

• keep wj in the buffer
Right-Arcr: (σ|wi,wj|β,A)⇒ (σ ,wi|β,A ∪ {(wi, r,wj)})

• pop wi

• add arc (wi, r,wj) to A

• move wi to the buffer (wj is removed from the buffer)
Shift: (σ ,wj|β,A)⇒ (σ|wj, β,A)

• push wj to the stack (remove it from the buffer)
(Kübler, McDonald, and Nivre 2009, p.23)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 51 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(nsubj)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj

obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(obj)

Note: we need Shift for NP attachment.Note: We need Shift for NP attachment.

root

nsubj

obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(case)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Right-Arc(obl)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Left-Arc(root)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: example

Root We saw her with binoculars

st
ac

k
bu

ffe
r

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 52 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Making transition decisions

• In shift-reduce parsing the actions are deterministic
• In transition-based dependency parsing, we need to choose among all

possible transitions
• The typical method is to train a (discriminative) classifier on features

extracted from gold-standard transition sequences
• Almost any machine learning method is applicable. Common choices include

– Memory-based learning
– Support vector machines
– (Deep) neural networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 53 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Features for transition-based parsing

• The features come from certain ‘addresses’ in the parser configuration, for
example

– The word at the stack top (or nth from stack top)
– The first/second word on the buffer
– Right/left dependents of the word on top of the stack/buffer

• For each possible ‘address’, we can make use of features like
– Word form, lemma, POS tag, morphological features, word embeddings
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations and in some
configurations the values may be missing

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 54 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

The training data
• We want features like,

– lemma[Stack] = duck
– POS[Stack] = NOUN
– ...

• But treebank gives us:

� �
1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 obj
7 . . PUNCT . _ 1 punct� �

• The treebank has the outcome of the parser, but not the features we need
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 55 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

The training data

• The features for transition-based parsing have to be from parser configurations
• The data (treebanks) need to be preprocessed for obtaining the training data
• Construct a transition sequence by parsing the sentences, and using treebank

annotations (the set A) as an ‘oracle’
• Decide for

Left-Arcr if (β[0], r,σ[0]) ∈ A

Right-Arcr if (σ[0], r,β[0]) ∈ A

and all dependents of β[0] are attached
Shift otherwise

• There may be multiple sequences that yield the same dependency tree, the
above defines a ‘canonical’ transition sequence

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 56 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Non-projective parsing

• The transition-based parsing we defined so far works only for projective
dependencies

• One way to achieve (limited) non-projective parsing is to add special
Left-Arc and Right-Arc transitions to/from non-top words from the stack

• Another method is pseudo-projective parsing:
– preprocessing to ‘projectivize’ the trees before training

• The idea is to attach the dependents to a higher level head that preserves
projectivity, while marking it on the new dependency label

– postprocessing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 57 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Pseudo-projective parsing

A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Non-projective tree:

A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD

Pseudo-projective tree:

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 58 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features
• We need some extra work for generating gold-standard transition sequences

from treebanks
• Early errors propagate, transition-based parsers make more mistakes on

long-distance dependencies
• The greedy algorithm can be extended to beam search for better accuracy

(still linear time complexity)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 59 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

Eisner 1996; McDonald et al. 2005

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 60 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph
which is a tree and traverses all the nodes

• For fully-connected graphs, the number of spanning
trees are exponential in the size of the graph

• The problem is well studied
• There are efficient algorithms for enumerating and

finding the optimum spanning tree on weighted
graphs

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 61 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph
which is a tree and traverses all the nodes

• For fully-connected graphs, the number of spanning
trees are exponential in the size of the graph

• The problem is well studied
• There are efficient algorithms for enumerating and

finding the optimum spanning tree on weighted
graphs

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 61 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm that finds the
minimum/maximum spanning tree (MST) of a fully connected graph
(Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 62 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

For each node select the incoming arc with highest weight

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 63 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Detect cycles, contract them to a ‘single node’

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 63 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Pick the best arc into the combined node, break the cycle

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 63 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Once all cycles are eliminated, the result is the MST

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 63 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Properties of the MST parser

• The MST parser is non-projective
• There is an alrgorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies (but still polynomial)
• The weights/parameters are associated with edges (often called

‘arc-factored’)
• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 64 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

CKY for dependency parsing

• The CKY algorithm can be adapted to projective dependency parsing
• For a naive implementation the complexity increases drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and right dependents of a
head are independently generated reduces the comlexity to O(n3)

(Eisner 1997)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 65 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Non-local features

• The graph-based dependency parsers use edge-based features
• This limits the use of more global features
• Some extensions for using ‘more’ global features are possible
• This often leads non-projective parsing to become intractable

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 66 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

External features

• For both types of parsers, one can obtain features that are based on
unsupervised methods such as

– clustering
– dense vector representations (embeddings)
– alignment/transfer from bilingual corpora/treebanks

(Koo, Carreras, and Collins 2008)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 67 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Errors from different parsers

• Different parsers make different errors
– Transition based parsers do well on local arcs, worse on long-distance arcs
– Graph based parsers tend to do better on long-distance dependencies

• Parser combination is a good way to combine the powers of different models.
Two common methods

– Majority voting: train parsers separately, use the weighted combination of their
results

– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 68 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are identified correctly.

– Labeled attachment score (LAS) requires the dependency type to match
– Unlabeled attachment score (UAS) disregards the dependency type

• Precision/recall/F-measure often used for quantifying success on identifying a
particular dependency type

precision is the ratio of correctly identified dependencies (of a certain type)
recall is the ratio of dependencies in the gold standard that parser predicted correctly

f-measure is the harmonic mean of precision and recall
(

2×precision×recall
precision+recall

)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 69 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS

100%

LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj 0%

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 70 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 71 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Averaging evaluation scores

• As in context-free parsing, average scores can be
macro-average or sentence-based
micro-average or word-based

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score: 50% (20/40)
– sentence-based average attachment score: 66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 71 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Dependency parsing: summary
• Dependency relations are often easier to interpret
• It is also claimed that dependency parsers are more suitable for parsing

free-word-order languages
• Dependency relations are between words, no phrases or other abstract nodes

are postulated
• Two general methods:

transition based greedy search, non-local features, fast, less accurate
graph based exact search, local features, slower, accurate (within model

limitations)
• Combination of different methods often result in better performance
• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better machine learning

methods (mainly using neural networks)
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 72 / 73

Grammars Constituency grammars & parsing Dependency grammars & parsing Summary

Next week

Mon/Wed Wrap-up/summary
Fri Exam

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 73 / 73

Where to go from here?

• Textbook includes good coverage of constituency grammars and parsing,
online 3rd edition includes a chapter on dependency parsing as well

• The book by Kübler, McDonald, and Nivre (2009) is an accessible
introduction to (statistical) dependency parsing

• For more on linguistic and mathematical foundations of parsing:
– Müller (2016) is a new open-source text book on Grammar formalisms.
– Aho and Ullman (1972) is the classical reference (available online) for parsing

(programming languages) and also includes discussion of grammar classes in
the Chomsky hierarchy. A more up-to-date alternative is Aho, Lam, et al. (2007).

– There is a brief introductory section on dependency grammars in Kübler,
McDonald, and Nivre (2009), for a classical reference see tesniere2015, English
translation of the original version (Tesnière 1959).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.1

Pointers to some treebanks
Treebanks are the main resource for statistical parsing. A few treebank-related
resources to have a look at until next time:

• Universal dependencies project, documentation, treebanks:
http://universaldependencies.org/

• Tübingen treebanks:
TüBa-D/Z written German
TüBa-D/S spoken German
TüBa-E/S spoken English
TüBa-J/S spoken Japanese

available from http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora.html
• TüNDRA - a treebank search and visualization application with the above

treebanks and few more
– Main version:

https://weblicht.sfs.uni-tuebingen.de/Tundra/
– New version (beta):

https://weblicht.sfs.uni-tuebingen.de/tundra-beta/
Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.2

http://universaldependencies.org/
http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora.html
https://weblicht.sfs.uni-tuebingen.de/Tundra/
https://weblicht.sfs.uni-tuebingen.de/tundra-beta/

CKY algorithm

function CKY(words,grammar)
for j ← 1 to Length(words) do

table[j− 1, j]← {A|A→ words[j] ∈ grammar}

for i ← j− 1 downto 0 do
for k ← i+ 1 to j− 1 do

table[i, j]← table[i, j] ∪
{A|A→ BC ∈ grammar and

B ∈ table[i,k] and
C ∈ table[k, j]}

return table

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.3

Even more examples
(newspaper headlines)

• FARMER BILL DIES IN HOUSE
• TEACHER STRIKES IDLE KIDS
• SQUAD HELPS DOG BITE VICTIM
• BAN ON NUDE DANCING ON GOVERNOR’S DESK
• PROSTITUTES APPEAL TO POPE
• KIDS MAKE NUTRITIOUS SNACKS
• DRUNK GETS NINE MONTHS IN VIOLIN CASE
• MINERS REFUSE TO WORK AFTER DEATH

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.4

Another CKY demonstration: spans

she saw a duck

0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5

Another CKY demonstration: spans

she saw a duck
0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5

Another CKY demonstration: spans

she saw a duck
0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5

Another CKY demonstration: spans

she saw a duck
0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5

Another CKY demonstration: spans

she saw a duck
0 1 2 3 4

NP V Det N, V

NP

VP

S

S → NP VP
S → Aux X
X → NP VP
NP → Det N
NP → she | her
NP → NP PP
VP → V NP
VP → duck|saw|...
VP → VP PP
PP → Prp NP
N → duck
N → park
N → parks
V → duck
V → ducks
V → saw
Prn→ she | her
Prp→ in | with
Det → a | theÇ. Çöltekin, SfS / University of Tübingen Summer Semester 2020 A.5

	Statistical Natural Language Processing
	This lecture is about
	Why do we need syntactic parsing?
	Ingredients of a parser

	Grammars
	Dependency vs. constituency
	Constituency grammars
	Formal definition
	Formal definition
	Formal definition
	Formal definition
	Formal definition
	Example derivation
	Constituency grammars and parsing
	Where do grammars come from

	Constituency grammars & parsing
	Context free grammars
	An example context-free grammar
	Representations of a context-free parse tree
	Parsing as search
	Problems with search procedures
	CKY algorithm
	Chomsky normal form (CNF)
	Converting to CNF: example
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration
	CKY demonstration: the chart
	Parsing requires back pointers
	CKY summary
	Earley algorithm
	Summary: context-free parsing algorithms
	Pretty little girl's school (again)
	The task: choosing the most plausible parse
	The task: choosing the most plausible parse
	Statistical parsing
	Probabilistic context free grammars (PCFG)
	PCFG example (1)
	PCFG example (1)
	PCFG example (2)
	PCFG example (2)
	Where do the rule probabilities come from?
	PCFGs - an interim summary
	PCFG chart parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	CKY for PCFG parsing
	What makes the difference in PCFG probabilities?
	What makes the difference in PCFG probabilities?
	What is wrong with PCFGs?
	Solutions to PCFG problems
	Lexicalizing PCFGs
	Example lexicalized derivation
	Evaluating the parser output
	Parser evaluation metrics
	PARSEVAL example
	Problems with PARSEVAL metrics

	Dependency grammars & parsing
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Projective vs. non-projective dependencies
	Projective vs. non-projective dependencies
	Parsing with dependency grammars
	Dependency grammar: definition
	Dependency grammars: common assumptions
	Dependency parsing
	Transition based
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	Features for transition-based parsing
	The training data
	The training data
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes
	Graph based
	Graph-based parsing: preliminaries
	MST parsing: preliminaries
	MST parsing: preliminaries
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser
	CKY for dependency parsing
	Non-local features
	External features
	Errors from different parsers
	Evaluation metrics for dependency parsers
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Averaging evaluation scores
	Averaging evaluation scores
	Dependency parsing: summary

	Summary
	Next week

	Appendix
	Where to go from here?
	Pointers to some treebanks
	CKY algorithm
	Even more examples
	Another CKY demonstration: spans
	Another CKY demonstration: spans
	Another CKY demonstration: spans
	Another CKY demonstration: spans
	Another CKY demonstration: spans

