
Statistical NLP: course notes
Çağrı Çöltekin — SfS / University of Tübingen

2020-05-25

These notes are prepared for the class Statistical Natural Language
Processing taught in Seminar für Sprachwissenschaft, University of
Tübingen.

This work is licensed under a Creative Commons “Attribution 3.0
Unported” license.

Draft lecture notes. Version: 9860539@2020-05-12; ml-eval.tex cb

https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en






6 Evaluating and tuning machine learn-
ing systems

So far, we defined evaluation metrics for both regression and clas-
sification. For regression, we typically use either root mean squared
error (RMSE) as an indication of average error made by the system,
or, coefficient of determination (R2) as an indication of model fit. For
classification, we have defined accuracy as well as precision, recall and
their harmonic mean F1 score. We also constantly repeated that, with
any machine learning method, the aim is to perform well on new,
unseen data points. A complex model can always memorize the an-
swers we expect on the training data, resulting in overfitting. An
overfitted model will perform well on the training data, but worse
on the test instances.

We have also discussed, regularization, a way to counteract overfit-
ting. In this short lecture, we will discuss a few more issues related
to overfitting, and common practices for choosing better models –
models with small test error.

6.1 Bias and variance of an estimator

There are two important quantities of interest that affect procedures
of model tuning, or choosing good models among a family of mod-
els.

Bias of an estimator is the difference between the estimate and its
true value. It is simply the difference between the expected estimate
of the model parameters and the true, ideal, model parameters.

bias(ŵ) = E[ŵ] −w (6.1)

An estimator with bias 0 is called an unbiased estimator. Even if we
have an unbiased estimator, it does not mean that we will have a
good estimate. The above formula tells us that on average, an un-
biased estimator’s estimate will be the same as the true parameter
value. An individual estimate may, and typically does, diverge from
the true value of the parameter. Put it another way, if we use an un-
biased estimator many times to estimate the parameters, the average
estimate will converge to the true parameter value in the limit.

Variance is another important property of an estimator. All else

Draft lecture notes. Version: 9860539@2020-05-12; ml-eval.tex cb



84 statistical nlp: course notes

−5 0 5
−5

0

5

w1

w2

−5 0 5
−5

0

5

w1

w2

Figure 6.1: A demonstration of bias and
variance through a regression problem
with two predictors. Each dot in the
plots indicates an estimate of the coef-
ficients of a regression equation sam-
pled using three (x,y) pairs from the
equation y = 2x1 + 2x2 with added
Gaussian noise. The values on the top
plot are estimated using ordinary least-
squares regression, while the bottom
plot includes an L2 regularization term
with regularization parameter 10. The
true values of parameters (2,2) is indi-
cated by a cross on the plots. The circles
indicate average of the estimates.

being equal, we prefer estimators with low bias. However, as we
hinted above, bias is not the only concern. Bias indicates a tendency
in the limit, which is reassuring if we had infinite amount of data
(and power to process them). However, we generally get only one
or a limited number of chances to estimate a model. And even if
we have an unbiased estimator, there are no guarantees that the sin-
gle estimate we get is not far from the true parameter value. As
we know, the expected divergence of an individual data point (in
this case parameter estimate) from its expected value is its variance.
Formally,

var(ŵ) = E
[
(ŵ− E[ŵ])2

]
.

Hence, as well as being low-bias, we want our estimators to have low
variance.

Before discussing the bias and variance of estimators further, let
us make the above discussion more concrete with an example. Fig-
ure 6.1 presents parameter values from two regression estimates for
the same data. The top plot shows the estimates obtained with a
ordinary least squares regression (OLS) estimation. The bottom plot
shows least squares regression with L2 regularization (ridge regres-
sion). Both estimates are performed on the same 1 000 draws from
the true regression model y = 2x1 + 2x2 with added Gaussian noise.
Each gray dot on both plots represents parameters w1 and w2 esti-
mated using a random draw from this model. Thanks to synthetic
data, we know the true parameter values (2, 2) which is marked on
the plots with a cross. And the mean of the parameter estimates are
indicated with a circle.

Note that the OLS estimate (top plot in Figure 6.1) has a low bias:
the average of the estimated parameters are closer to the true values.
In fact, the OLS is an unbiased estimator, if we repeat the estimation
more, the average would get closer and closer to the true values. It
is also known to be the unbiased estimator with the lowest variance.
However, the variance of the OLS is high compared to the ridge re-
gression estimate (the bottom plot), which clearly exhibits more bias.
Since the ridge regression tries to minimize the parameter values to-
gether with the training error, the average estimate is biased towards
the origin (0, 0). Yet, its variance is moch lower, making it less likely
for an individual estimate to fall too far from the true parameters. In
the experiment plotted in Figure 6.1, the variances of OLS estimates
are over 100 times more than the variances of their regularized esti-
mates.

As it should be clear from the discussion above, we want low-bias,
low-variance estimators. However, as it turns out, this is a trade off.
Low variance comes with the cost of high bias, and low bias comes
with the cost of high variance.

Bias and variance is also related to overfitting. An estimator with
high variance is likely to overfit to the data. An estimator with high
bias is, as expected, likely to underfit, not able to learn the true pa-
rameters. Bias and variance are properties of an estimator. However,



evaluating and tuning machine learning systems 85

it also interacts with model complexity. Models with high complex-
ity (e.g., many parameters) tend to have high variance, while simpler
models exhibit low variance, but high bias.

6.2 Model selection and tuning

The best way to prevent overfitting and high variance is more data.
However, this is often not a (cheap) choice. In many practical use
cases, we have a limited amount of data. In almost any use of super-
vised machine learning systems, we face with the task of selecting
a model among a set of models, with possibly different characteris-
tics or architectures. However, even with a single model family, e.g.,
even if we are using regression, there are some aspects of the model
we want to tune. For a regression model, this could involve elim-
inating some of the predictors (hence their coefficients) to simplify
the model, using a particular regularization method (e.g., L1 or L2),
and/or choosing the best regularization strength. Note that all of
these has to be fixed at the time of training. Hence, we cannot (in
general) learn the same method used for learning the parameters.
Such parameters, ones that needs to be fixed outside the training
procedure, are called hyperparameters. And, the task of selecting a
model can be considered as tuning these hyperparameters.

As noted many times earlier, the whole point of the exercise is to
estimate a good model that does not overfit. We want a model that
makes fewer mistakes on unseen data. In other words, our ultimate
aim is to reduce the test error. In practice, we do not know the labels
for the data points that our model will be used on. As a result, we do
not know the test error. However, we can estimate the test error on
the labeled data set we have at hand. The crucial point here, however,
is to make sure that the part of the data we use for estimating the test
error and the part of the data that we use for training do not overlap.
If we tune the hyperparameters on the training data, we would also
be ‘overfitting’ them to the training set. Hence, in practice we use a
portion of data, often called development set or held-out data for testing
different models/hyperparameters, while using the other rest of the
data, training set, for training each of the alternative models.

As long as the distribution of the new/unseen data is the same
as the distribution of the training/development set, this procedure
works well. However, we would not be making use of a part of the
annotated data. Furthermore, we would be tuning our hyperparam-
eters on a fixed part of the data set, which may not be a good proxy
for the test set, especially if the size of the data is small. The hyper-
parameters tuned on a single fixed validation set may also result in
‘overtuning’ to the validation data used.

K-fold cross validation is technique that allows to use the com-
plete data for training and tuning. In k-fold cross validation, we
repeat each step of the tuning process (e.g., for each set of hyperpa-
rameter values we explore) k times. At each repetition (fold), we hold



86 statistical nlp: course notes

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Train Dev

Fold 1

Fold 2

Figure 6.2: A schematic description of
k-fold cross validation. Each row corre-
spond to an experiment where the part
of the data (marked red) is held-out,
and the rest (blue segments) is used for
training.

a different 1/kth part of the data out as the development set, and we
use the rest of the data as training set. Figure 6.2 demonstrates the
way data would be split for 5-fold cross validation. Typically, we
take the average performance/error metric from all folds as our es-
timate of performance/error on the test data. Hence, we choose the
hyperparameter setting whose k-fold performance is the best. If we
also average over the parameter values learned in each fold, we often
arrive at a parameter estimate with less variance.

Typical values for k in k-fold cross validation used in practice are
5 or 10. A special case of k-fold cross validation, where k is equal
to the number of data points is called leave-one-out cross validation.
In general, the choice of number k in cross validation shows a trend
similar to bias–variance trade-off we discussed. Remember that our
aim with k-fold cross validation is to estimate the test error. A large k

results in smaller held-out data, causing a more varied performance
score, but a less biased estimate of the test error/performance, since
we would be averaging over many scores. A small k, on the other
hand, result in larger validation sets and low variance, but it will
also bias the estimates towards ones that work best on these small
number of validation sets.

A practical issue with held-out data (and cross validation) in clas-
sification is the distribution of class labels across the splits. To keep
the class distribution of training and held-out data the same often
shuffling it before the split is sufficient. However, if some of the class
labels are rare there we may end up with splits where some class
labels are not represented in the training or held-out sections of the
data. To prevent this, a methods called stratified split is used. The
idea is simply to keep the class distribution same in both training
and held-out parts of the data by splitting the parts of the data with
the same class distribution.

6.3 Comparing with a baseline

Even if we tune our system to the best of our ability, the question
of whether the model is doing anything useful cannot simply be
answered by evaluating a single model. This is where a baseline model
is useful. In the simplest case, we expect our models to perform
better than trivial baselines. A common trivial baseline is a random
baseline which determines the outcome randomly. For classification,
for example, we would randomly assign one of the class labels to
each test instance. Another common choice for classification is the
majority class baseline, which will definitely give a trivial baseline
better than the random baseline in case of class imbalance.

In many problems, however, there are other trivial baselines that
perform better than a random or majority class baseline. For many
cases there often are existing non-trivial solutions, or state-of-the-art
results. If such a state-of-the-art baseline exist, it is more informative
compare our models with a such a baseline or a known result from
the relevant literature. This sort of comparison often requires yet an-



evaluating and tuning machine learning systems 87

other split of the annotated data set. Even if we are using a held-out
development set, since the hyperparameters are tuned on this data
set, the results on the development set is bound to be better than
that is expected on new test instances. In a way, over-tuning on a de-
velopment set is likely ‘overfit’ the hyperparameters. In such cases
the results on a test set, which ideally is used only once to report
the results, is more objective for comparing different models’ perfor-
mances on the task. This is particularly common in research, where
it is also a common practice to use a designated test set that facili-
tates the comparison of the methods suggested by different groups
or people.

Comparing with a baseline or a state-of-the-art model allows us
to interpret our performance metrics. If we observe an improvement
over an appropriate baseline, then we can be certain that our model
is doing something (more) useful. However, there is one more ques-
tion often neglected in CL/NLP literature. The question is whether
the improvement we observe can be by chance or not. This is where
statistical significance tests are used in many areas of research. In natu-
ral language processing, the test set sizes we use are generally large,
as a result even small differences tend to be statistically significant.
However, it is in general a good idea to test the differences explicitly.
We will not discuss the statistical significance testing in this class. It
is a very well established field. When comparing the performance
difference between two (or more) models, it is important to use an
appropriate procedure to show that the differences observed are un-
likely to be by chance.

6.4 Summary

This short lecture reviewed a few topics/practices about evaluating
machine learning models. Although brief, these are very important
for any applied ML research and practice. As Richard Feynman fa-
mously put it, “The first principle is that you must not fool yourself
and you are the easiest person to fool.” The lesson from the present
lecture is trying to make sure not to fool ourselves when we evaluate
our ML systems. We discussed only some of the tools or practices
for this purpose. Most machine learning text books (e.g., Hastie, Tib-
shirani, and Friedman 2009; Bishop 2006) cover the topics discussed
in this class.





Bibliography

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learn-
ing. Springer. isbn: 978-0387-31073-2.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The
Elements of Statistical Learning: Data Mining, Inference, and Predic-
tion. Second. Springer series in statistics. Springer-Verlag New York.
isbn: 9780387848587. url: http://web.stanford.edu/~hastie/
ElemStatLearn/.

Draft lecture notes. Version: 9860539@2020-05-12; ml-eval.tex cb

http://web.stanford.edu/~hastie/ElemStatLearn/
http://web.stanford.edu/~hastie/ElemStatLearn/

	Evaluating and tuning machine learning systems
	Bias and variance of an estimator
	Model selection and tuning
	Comparing with a baseline
	Summary


