
Statistical NLP: course notes
Çağrı Çöltekin — SfS / University of Tübingen

2020-07-13

These notes are prepared for the class Statistical Natural Language
Processing taught in Seminar für Sprachwissenschaft, University of
Tübingen.

This work is licensed under a Creative Commons “Attribution 3.0
Unported” license.

Draft lecture notes. Version: 3d8fa4f@2020-07-12; sequence-learning.tex cb

https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en

1 This is an example of a garden path sen-
tence, where people also have difficul-
ties interpreting them at first.

2 We can even say that the first sequence
is not possible in a grammatical sen-
tence.

9 Sequence learning

The machine learning methods we discusses so far are built on the
assumption that the training instances are independent and identically
distributed (i.i.d). When this assumption is reasonable, each predic-
tion can be made independently of other predictions. For example,
whether current email is spam or not unlikely to depend on the pre-
diction on the previous email. In most realistic scenarios, it is fairly
reasonable to make each decision in isolation.

In some problems, however, individual predictions are not inde-
pendent of each other. For example, consider the task of predicting
the part-of-speech (POS) tagging where the aim is to assign part-of-
speech tags, such as NOUN or VERB to words. POS assignment for a
large number of words is ambiguous. For example the word book is
a NOUN in He read a book, while it is a VERB Please book a flight. An
important fact to note for our purposes here is that the choice of POS
tag depends on (the POS tags of) the other words in the sentence.
For example, if the previous word is a, or more generally, if it is a de-
terminer (DET), the word is most likely a NOUN. The correct prediction
cannot be made individually for each word.

For another example, consider the example sentence in (1).1

(1) The
DET
DET

old
ADJ
NOUN

man
NOUN
VERB

the
DET
DET

boat
NOUN
NOUN

Among others, POS tag assignment to the words old and man have
multiple options, resulting in two alternative POS tag sequences dis-
played above. The first sequence, with old identified as an adjective
and man identified as noun is more likely if we consider POS as-
signment in isolation. The word old is used much more frequently
as an adjective than as a noun. Similarly, the word man is a noun
(rather than a verb) in its typical usage. However, the second se-
quence of POS tags are much more likely than the first one.2 The
correct POS assignment is only possible if we pay attention to the
whole sequence.

The methods we discuss in this lecture are methods that are suit-
able for learning sequences with dependences. We will use the POS
tagging as our running example throughout this lecture. However,
these methods have wider application areas in NLP and also in many
other related or unrelated fields. Examples include,

• Predicting weather conditions. For example, the fact that it rained

Draft lecture notes. Version: 3d8fa4f@2020-07-12; sequence-learning.tex cb

122 statistical nlp: course notes

3 For example, DET-ADJ-NOUN-DET-NOUN
in our example can be considered a sin-
gle label.

4 This exponential growth is an impor-
tant consideration for the models we
will discuss in the rest of this lecture.

5 Since temporal sequences are one of
the most common sequences, we of-
ten refer to observation at certain time
steps. However, the sequences modeled
do not have to be temporal sequences.
The models we discuss here are equally
applicable if the sequence does not have
any temporal interpretation.

today is an important predictor for rain tomorrow since rainy days
often follow each other.

• Gene predictions from a genome also is an example where predic-
tions are not independent of each other.

• Getting closer to home, optical character recognition also makes
use of dependencies between the letters predicted.

• Some other problems that does not look like sequence prediction
at first sight may also be cast as sequence prediction tasks. An ex-
ample we will revisit later is tokenization or segmentation, where
the task is formulated as labeling each characters as being at a
boundary or in a word-internal position. Again, the prediction,
whether an item is at a boundary or not depends on earlier pre-
dictions. Hence, modeling the dependencies between the labels is
useful.

Hopefully, the examples above are enough to convince you that
in these problems, best independent predictions are likely to lead
wrong predictions. One way to solve the problem is to consider each
possible sequence of labels as an independent label.3 That is, for a
given sentence of length five as in our example, consider each pos-
sible POS tag sequence of length five as an atomic, indivisible label.
However, this clearly makes it difficult to use the information based
on individual words. Furthermore, expands the label space expo-
nentially. If we had 10 POS tags, for example, we would have 105

possible possible POS tag sequences for a 5-word sentence, growing
exponentially with the length of the sequence.4

In this lecture, we will discuss some ‘traditional’ methods, mainly
hidden Markov models (HMMs) for modeling sequences. We will also
introduces so-called maximum-entropy Markov models (MEMMs) and
conditional random fields (CRFs) briefly, mainly by pointing out the
differences between them and the HMMs. The typical ways to model
sequences using neural networks will be discussed later.

The problems noted above have two parallel sequences. For ex-
ample, in POS tagging, we need to model the relation between the
words and POS tags. Often one of the sequences is observed, e.g., the
words, while the other is hidden or latent, e.g., the POS tags are not
something we directly observe in natural language sentences. Hence,
as well as being sequence models, the models we listed above are all
latent variable models. To make the introduction easier, we will start
with an approach to model sequences without hidden variables, then
extend our discussion to the models with latent variables.

9.1 Markov chains

Markov chains or Markov models are probabilistic models of sequences
where the observation at time t only depends on a limited history
of previous observations (as opposed to all of the previous observa-
tions).5

We introduce Markov chains using, language models, one of the
basic tools in natural language processing. The aim of a language

sequence learning 123

6 Theoretically, the number of sentences
in a language is unbounded. However,
even without reference to potentially
infinite number of sentences, the com-
binatorial nature of forming sentences
by combining words from a lexicon re-
sults in a very large space (exponential
in the length of the sequence) of possi-
ble sentences that observing a particu-
lar sentence is always going to be a very
rare event.
7 We are taking some (notational) short-
cuts here. For example, P(The) here
means the probability of observing The
as the first word. Similarly, P(old | The)
means observing old given the previ-
ous word is The. A less ambiguous
notation would be, P(w1 = The) and
P(w2 = old |w1 = The), where w1

and w2 refer to first and the second
word in a bigram respectively.

8 The assumption in this case is clearly
not correct. The usage/probability of
words depend on more than a few
previous words. However, as in any
model, the goal is finding ‘useful’ mod-
els, and even the simple bigram models
have been useful in many tasks.

9 As a result, a first-order Markov
model over words is called a bigram lan-
guage model. Trigram language models
are also common in practice, and n-
gram models of ‘n’ up to five are some-
time used by combining them with
lower-order n-grams. We will return
to the discussion of the n-gram lan-
guage models in more detail later in
this course.

model is to assign probabilities to sequences, most typically to the
sequences of words. Returning to the our earlier example, we want
to assign a probability to a sentence like The old man the boat. Intu-
itively, the probability of this sentence should not be as high as less
‘perplexing’ examples like The old man sleeps, or The old man painted
his boat. However, the probability should also be (much) higher than
ungrammatical examples like *The old woman the boat, or semantically
(more) implausible examples like The old man the book.

In summary, we want to know P(The old man the boat). As a brute-
force solution to find the maximum-likelihood estimate, we may con-
sider counting the number of times this sentence occurs in a large
corpus, and divide it to the total number of sentences. However,
this will clearly not work as many reasonably high-probability sen-
tences will never occur even in very large corpora.6 The solution
is, factoring/decomposing the probability of a sentence in terms of
probabilities of words in it. Clearly, the probability of observing a
word in a sentence is not independent of other words. Nevertheless,
we can factor P(The old man the boat) as7

P(The)× P(old | The)× P(man | The old)× P(the | The old man)

× P(boat | The old man the) .

This factorization of the probability is simply an application of the
chain rule of probabilities. Like any other factorization based on
the chain rule, the result is still the exact joint probability. However,
estimating the final conditional probability still requires observing
the whole sentence.

If we model the process using a Markov chain, in particular, if we
assert the conditional independence (assumption) that the probabil-
ity of a word is independent from other words given the previous
word, the same factorization becomes,8

P(The)×P(old | The)×P(man | old)×P(the | man)×P(boat | the) .

In such a first-order Markov model for modeling sentences, we need
estimation of conditional probabilities of words given only the pre-
vious word. These conditional probabilities are much easier to esti-
mate from a corpus, since it only depends on observations of bigrams
(two-word sequences).9

More formally, a first-order Markov chain is defined by

• a set of states Q = {q0,q1, . . . ,qk}. Each state corresponding to a
word type in the lexicon for our language model example.

• q0 is a special state start state

• and a matrix A,

A =


a01 a02 . . . a0k

a11 a12 . . . a1k
...

...
. . .

...
ak1 ak2 . . . akk



124 statistical nlp: course notes

where each element of matrix aij is the transitions probability
from state qi to state qj. Note that, the first column of the matrix
is all 0s (there are no transitions to q0), and not included in the
above matrix.

Given a set of sequences, it is relatively trivial to estimate the prob-
abilities in matrix A, for example by using maximum-likelihood es-
timation, we count the number of times transitions from qi to qj
occurs, and divide it to the number of times qi is visited. For higher-
order Markov models, the rows of the transition matrixA correspond
to sequences of states. However, we still need as many columns as
the number of states. For example, the paramters of a second-order
Markov model with n states is defined by a matrix of n2 ×n.

9.2 Hidden Markov models

Hidden Markov models (HMMs) are models of two sequences, one of
the sequences are hidden. The sequence of hidden variables in an
HMM forms a Markov chain. The non-hidden, or observed sequence
is assumed to be independent of the other variables in the model
given the associated hidden variable.

〈S〉

The

DET

old

NOUN

man

VERB

the

DET

boat

NOUN

.

PUNC Figure 9.1: An example HMM POS tag-
ger. The states are the POS tags, and
the observed sequence is the words (to-
kens). The state 〈S〉 is a special ‘start
state’.

Figure 9.1 presents a visualization of a first-order HMM for POS
tagging. The hidden states (POS tags) form a Markov chain. Each
state is independent of others given the previous state, and each ob-
servation (word) depends only on the corresponding state. The gen-
eral intuition here is that in this sentence, we can replace a particular
word with another one as long as they belong to the same category.
For example, we can replace the word old with another adjective, e.g.,
young or strong. The probability assigned to the sentence will, then,
change based only on probability of the particular word given the
HMM is in the ADJ state. Clearly, not all independence assumptions
in the model is realistic. The model may assign even a higher prob-
ability of the sentence The old man the book, assuming that book is a
more common noun than boat. This is due to the fact that the depen-
dence between the VERB man and the noun is not part of this model.
Despite the shortcomings, HMMs are useful models for many (NLP)
problems.

From this informal introduction, you should have already gath-
ered that HMMs are probabilistic models. In particular, they model
the joint probability P(o,q) distribution over a sequence of hidden
states, q, and a sequence of corresponding observations o. This joint
distribution is factorized such that P(q,o) = P(q)P(o | q). This fac-
torization is simply application of chain rule of probabilities, and
model any pair of sequences without loos of generality. The interest-

sequence learning 125

m t
o b

0.2
N

m t
o b

0.1
V

m t
o b

D

m t
o b

0.1
A

〈S〉

0.1

0.70.2

0
.7

0.1

0.7

0
.3

0.9

0
.3

0.1

0.5

A =

A N V D


0.0 0.2 0.1 0.7 〈S〉
0.1 0.9 0.0 0.0 A

0.0 0.2 0.7 0.1 N

0.1 0.3 0.1 0.5 V

0.3 0.7 0.0 0.0 D

B =

A N V D


0.2 0.4 0.5 0.0 m

0.8 0.2 0.0 0.0 o

0.0 0.0 0.0 1.0 t

0.0 0.4 0.5 0.0 b

Figure 9.2: An example HMM state di-
agram (top) and corresponding transi-
tion (A) and emission (B) probabili-
ties for a toy POS tagger. The letter
in each state represents the words, with
darker shades indicating higher proba-
bility. The labels on the arcs are transi-
tion probabilities. The transitions with
probability 0 are not drawn.

ing part of the HMMs are simplification of this model because of the
independence assumptions asserted by the models structure. Mak-
ing the independence assumptions of an HMM model explicit, the
joint probability becomes

P(o,q) = P(o1, . . . ,on,q0, . . . ,qn)

=

[
n∏
1

P(qt|qt−1)

]
n∏
1

P(ot|qt) . (9.1)

This formulation also clarifies the parameters of an HMM model.
More formally, an HMM is defined by

• A set of states Q = {q0, . . . ,qk}, where q0 is a special ‘start state’

• A set of possible observations O = {o1, . . . ,om}

• A transition probability matrix

A =


a01 a02 . . . a0k

...
...

. . .
...

ak1 ak2 . . . akk


where aij is the probability of transition from state qi to state qj.
Sometimes the first row of A, the transitions from the start state
to each state is indicated with a separate vector of probabilities
π = {P(q1), . . . ,P(qn)}, in which case the matrix A above would
be a k× k matrix.

• A matrix of emission probabilities

B =


b11 b12 . . . b1n

...
...

. . .
...

bm1 bm2 . . . bmn


where bij is the probability of emitting output oi at state qj.

To make this definition more concrete, a toy HMM POS tagger de-
fined over four part of speech categories, (A)djective, (N)oun, (V)erb
and (D)eterminer, and four words, (m)an, (b)oat, (o)ld and (t)he, is de-
picted in Figure 9.2. The upper part of figure shows a state diagram,
much like a weighted finite-state automaton. When the automaton
visits a state, picking a path probabilistically, it also emits an output
according to the probability distribution given in B. Even if our aim
is to classify the items in a sequence, it is generally, intuitive to think
of an HMM as a generative device.

In our definition, the rows of the matrix A define conditional dis-
tribution of the next state given the current state. The columns of B
define conditional probability distributions of words given POS tags.
Since both rows of A and columns of B are proper probability distri-
butions (they sum to one), the model is define only on these four POS
tags and four words. Also note that, the probability distributions de-
fined in B are not probability of POS tags given the probability of the

126 statistical nlp: course notes

10 We will discuss this issue further
when we introduce language models.

words. For example, b13 = P(m|V) = 0.5 and b12 = P(m|N) = 0.4. It
is important to notice that does not mean that man is more likely to
be a verb. It is the inverse conditional probability: it means it more
likely to output man if we are in state V in comparison to when we
are in state N. To reverse these probabilities, we need to apply the
Bayes’ rule.

As presented here, however, the HMM defines multiple probabil-
ity distributions over equal-length sequences. To define a probability
distribution over sequences of any length, we typically introduce an-
other special symbol marking the end of sequences.10

From the definition of the HMM above, it is clear how to assign
probabilities to pairs of state and output of sequences. If we have
both sequences, and have an HMM defined by the A and B matrices
in Figure 9.2, all we need to do is put the relevant quantities in Equa-
tion 9.1 and calculate it. This calculation is also linear in the length
of the sequence (its complexity is O(n), since it requires 2n+ 1 mul-
tiplications). However, assigning probabilities to pairs of sequences
is not the typical usage of HMMs.

HMMs are used for two common scenarios. First, they can be used
for sequence labeling tasks as in our POS tagging example. This is
also called the decoding problem. Here, we only have access to the
output (the words), and we want to determine the most likely state
sequence (POS tags). Second common usage of HMMs, sometimes
called evaluation, is to assign probabilities to observation sequences.
Again, we only have access to the observation sequence, and cal-
culate the probability of the sequence by summing the probabilities
over all possible state sequences. Both tasks can be computationally
expensive. And, the same problems will surface when we want to
learn the parameters of an HMM from data.

To appreciate the computational complexity, and discuss the so-
lutions to the problems above, another way of visualizing an HMM
is by ‘unfolding’ the sequence is useful. The unfolded version of the
HMM in Figure 9.2 is presented in Figure 9.3. In this representation,
each column of nodes represent one time step in the sequence. We
will use this representation for discussing the use cases noted above.

The old man the boat

A

N

V

D

A

N

V

D

A

N

V

D

A

N

V

D

A

N

V

D

〈S〉

Figure 9.3: An example HMM state lat-
tice (or trellis). The path representing
the state sequence of the example in
Figure 9.1 is indicated with thick red
lines.

sequence learning 127

9.2.1 Decoding

In the decoding problem, given an observation sequence, we are in-
terested in finding the most likely state sequence according to the
model. More formally, the task we want to solve is to find the best
sequence q̂ such that

q̂ = arg max
q

P(o,q) .

The solution requires a search for the best state sequence among
all state sequences. A naive attempt to solve this problem would
enumerate all possible POS tag sequences, and select the sequence
with the highest P(o,q), which corresponds to following all possi-
ble paths in the lattice in Figure 9.3, and selecting the path with the
highest probability. However, it is easy to see that there are exponen-
tially many paths in the lattice. With k possible states, the number
of all all possible hidden state sequences (or equivalently all paths
in the trellis) is kn for an observation sequence of length n. For our
example, there are 45 = 1 024 possible POS tag sequences, and every
additional item in the sequence increases this number by four. For
example, for a sequence of 20 words we get 420 = 1 099 511 627 776

alternative sequences. Like any problem with exponential complex-
ity, this makes the naive solution intractable.

Fortunately, there is a dynamic programming solution, commonly
known as the Viterbi algorithm, that makes the decoding problem
tractable. The solution is possible because of the structure of the
model. Notice that the naive approach recalculates the probabilities
of sequences leading to a particular state for each possible state at
each point. For example to find the best POS tag at the end of the se-
quence in Figure 9.3, we need compare probability of sequences lead-
ing to the four possible POS tags. However, the highest-probability
sequence leading to each of the previous states (POS tags) are the
same for all four final tag options. Hence, we only need to know
what is the best sequence leading to each of the previous POS tags.
As a result, if we record the best probability leading to each node, we
do not need to re-calculate all the paths leading to this node again
for determining the best probabilities of later nodes.

Formally, at each time step t the maximum likelihood of the se-
quence with state j is

v(t, j) = max
i∈Q

v(t− 1, i)aijbjot

where Q is the set of states (POS tags) aij is the transition from state
i to state j, and bjot

is the emission probability of observation ot
given the state is j. Except v(t − 1, i), which the maximum likeli-
hood leading to state i in the previous time step, the other values
in the right hand side of the formula are the values from the A and
B matrices defining the HMM. If we store these likelihoods at every
node of the HMM trellis, we can simply perform the calculations in
O(n× k) for sequence length n and number of states k. The cost is

128 statistical nlp: course notes

A =

A N V D


0.0 0.2 0.1 0.7 〈S〉
0.1 0.9 0.0 0.0 A

0.0 0.2 0.7 0.1 N

0.1 0.3 0.1 0.5 V

0.3 0.7 0.0 0.0 D

B =

A N V D


0.2 0.4 0.5 0.0 m

0.8 0.2 0.0 0.0 o

0.0 0.0 0.0 1.0 t

0.0 0.4 0.5 0.0 b

Figure 9.4: The example HMM param-
eters from Figure 9.2. Repeated for con-
venience.

11 You need to perform the calculations
to see if this is true for our example pa-
rameters in Figure 9.2.

an additional space complexity of O(n× k), since we need to store
these likelihoods. The best sequence is the sequence with the high-
est likelihood at the final step. However, note that to recover the
exact sequence that leads to the final maximum likelihood, we also
need to store ‘backlinks’, the state in time step t− 1 that leads to the
maximum likelihood at time step t.

If we, calculate the maximum probability leading to the output old
as a noun in our example, we need the maximum probabilities lead-
ing tho each of the POS tags in the first step with output t. We can
easily calculate these by multiplying a0,i and bi,t for each POS tag
i. These likelihoods will be 0.00 for all tags except for determiner in
our example since probability of observing the in other states is 0.00
for POS tags (states) other than D according to the emission proba-
bilities in B. The likelihood of D in step 1 is 0.7× 1.0 = 0.7. We store
all these values, and then we can calculate the likelihoods for time
step 2, without recalculating any of the previous steps. Now, if we
want to calculate the likelihood N in the second time step, we simply
multiply values stored earlier, transitions probabilities from each of
the earlier stats to N and pick the maximum probability among them:
0.7× 0.7× 0.2. Note that likelihood of A in this time step is higher
(0.7 × 0.3 × 0.8). We store all these values, including the previous
state that leads to the maximum likelihood, and continue processing
until the end of the string. An important aspect of these calculations
is that even though an initial sequence of tags may be much more
likely than others, a later transition may change the sequence with
the maximum likelihood. For example, the most likely sequence at
step 3 is DAN in our example. However the low transition probability
from N to D may change the best sequence at time step 4 DNVD.11

In some applications, we may want to obtain not only the best se-
quence according to the model, but a ranked list of highly-probable
sequences. In this case, instead of storing only a single best likeli-
hood at each node, we can store a pre-defined number of best likeli-
hood values, and enumerate the best options at the end of the output
sequence. This is an example of a beam search that finds not only the
best result, but n-best result according to the model. A very common
practice in the field is to use a generative model like an HMM to pro-
duce a ranked list, and re-rank this list with a discriminative model
using other external or global features that are difficult to incorporate
into a generative model’s input.

9.2.2 Assigning probabilities to output sequences

Another common use of HMMs is to assign probabilities to output
sequences. This can, for example, be useful for assigning probabil-
ities to utterances or sentences in speech recognition and machine
translation formulated as noisy channel problems.

The problem, and the solution, is similar to decoding. Instead
of storing the maximum probability leading to a particular node,
we store forward probabilities αt,i at each node, which are the total

sequence learning 129

probability of observing the output ot and being in state i. More
formally,

αt,i =

k∑
j=1

αt−1,jP(qi|qj)P(ot|qi)

where k is the number of states. Note that calculation of forward
probabilities at teach step only depend on the previous one. Hence,
storing these values, as in decoding, makes it a tractable problem.
This version of the dynamic programming algorithm is sometimes
called the forward algorithm.

Once we have the forward probabilities, the probability of a partic-
ular observation sequence can be calculated using the forward prob-
abilities at he final time step n.

P(o|M) =

|Q|∑
j=1

αn,j

9.2.3 Learning HMMs

If we have supervised input, that is pairs of observation and (hid-
den) state sequences, estimating the HMM parameters is easy. Using
maximum likelihood estimation, we can simply count and divide the
appropriate values:

aij =
C(qi → qj)∑
k C(qi → qk)

bij =
C(qi → oj)∑
k C(qi → ok)

where C(·) the number of times a particular transition occurs for the
first formula, and the number of times the specified output is emitted
in a given state for the second formula.

The above formulation defines the maximum likelihood estima-
tion. A known problem with maximum likelihood that it overfits the
training data. Particularly, the model will assign zero probabilities
for transitions and emissions that are not observed in the training
data. In practice, it is common to use smoothed probability estimates,
so that some of the probability mass is reserved for unobserved tran-
sition and/or emission events. We will discuss smoothing in detail
while introducing the language models.

HMMs can also be trained in an unsupervised manner. We will
not go into detailed description of unsupervised estimation of HMMs.
However, the most common procedure is using a version of the EM
algorithm to find a model that assigns maximum likelihood to the
given output sequences. In case of HMMs, the complication again
comes from the dependencies between the variables, which makes
the computation of E/M steps expensive. However, we already saw
the forward algorithm which calculates the likelihood of an obser-
vation sequence (this is the main part of the E step). For the M

130 statistical nlp: course notes

x

y z

P(x)P(y |x)P(z |x,y)

y

x z

P(y)P(x |y)P(z |y,x)

z

x y

P(z)P(x | z)P(y | z,x)

Figure 9.5: Three different ways to
factorize the joint distribution of three
variables x, y and z, and the directed
graphical model describing each factor-
ization.

step, a similar dynamic programming algorithm is used for efficient
calculation of the model parameters. The algorithm is known as
Baum–Welch or forward-backward algorithm. Interested readers can
find references to descriptions of the algorithm at the end of the
chapter.

9.3 Graphical models: a brief divergence

Hidden Markov models are probabilistic models with certain struc-
ture. The structure of the model is imposed by the model’s (condi-
tional) independence assumptions between the random variables in-
volved. In particular, for HMMs, all output variables are assumed to
be conditionally independent of all other given the associated state,
and the states depend only on a limited history of earlier states.
Probabilistic graphical models provide a way to define and display the
structure of such models with an intuitive, visual formalism. A brief
introduction to graphical models will highlight the differences and
similarities between the HMMs introduced in some detail above, and
the other alternative models which we will discuss briefly.

A graphical model expresses the structure of a joint probability
distribution. Remember that a joint distribution can be factorized in
different ways. For example, for three random variables x, y, and z,
we can factorize the joint distribution six different ways. Figure 9.5
shows three of these different factorizations and the directed graphi-
cal model corresponding each factorization. In graphical models, we
represent the random variables with nodes. The directed graphical
models are represented with directed graphs as in Figure 9.5. Each
variable (node) in a directed graphical model depends only on its
parents. As a result, the term P(x | y) in the factorized expression
results in a directed edge from node y to node x.

Directed graphical models provide a visual, intuitive way to rep-
resent the structure of a joint probability distribution, when the re-
lations between the variables are causal. For example, the topmost
graph in Figure 9.5 indicates that the value of x is (partially) respon-
sible form values we obtain from y and z, and similarly y also has an
effect on z. In such models, we can generate data from the model by
starting at the node(s) with no incoming edges, and sampling values
from these nodes, and then sampling from the child nodes given the
samples from the parent node(s). In some applications, it is useful
to be able to generate data from the model in this way. However,
even if our application does require generating data from the model,
thinking about the model in terms of a ‘generative story’ is gives a
better intuition about the model.

As a concrete example, think about the naive Bayes classifier we
introduced earlier. The conditional assumption of the naive Bayes
classifier is that given the class y, the features x are independent
of each other. Figure 9.6 shows the representation of a naive Bayes
classifier as a directed graphical model. The figure also demonstrates
two conventions used in graphical models. The observed variables

sequence learning 131

y

x1 xn. . .

y

x

n

Figure 9.6: Representation of a naive
Bayes classifier with n features as a
graphical model. Both graphs show the
same model. The one on the left lists
the multiple variables (features) explic-
itly, while the one on the right uses the
‘plate notation’ for indicating multiple
variables with the same independence
properties in a compact form.

12 In general, the factorization of joint
probability in undirected graphs are
based on subsets of nodes (called
cliques). We will not discuss the details
of the way the joint probability distribu-
tion of a given graph is factorized. In-
terested readers are referred to the ref-
erences at the end of the chapter.

y

x1 xn. . .

Figure 9.8: An example undirected
graphical model.

are indicated by shaded nodes, and when there are many variables
of the same independence properties, only one of them are drawn
within a square box (called a ‘plate’) which also indicates the number
of variables.

The graph representation in Figure 9.6 indicates the conditional
independence assumption of the naive Bayes classifier in a visual,
intuitive way. This also defines a generative story: we first determine
the class label by sampling from p(y) (e.g., whether to create a spam
or non-spam document), and then we sample features (e.g., words)
from the distribution p(x | y). We are, in most cases, interested in
the inverse conditional probability, p(y | x). However, the generative
point of view is often useful for understanding the model.

Now we are ready to define HMMs as graphical models. Fig-
ure 9.7 presents an HMM following the conventions we described
above. In words, each state (qi) only depends on the previous state,
and the output items (oi) only depend on the corresponding states.
Note that we can easily represent additional dependencies. For ex-
ample we can form a second-order Markov chain by drawing addi-
tional directed edges to each node from their ‘grandparent’ in Fig-
ure 9.7.

q0 q1 q2 q3 q4 . . . qn

o1 o2 o3 o4 . . . on

Figure 9.7: Representation of HMMs as
graphical models.

In all the directed graphical model examples above, the model as-
sume a sort of order, or causal relationship, between the variables.
Sometimes there is no such clear causal relationship. In that case
undirected graphical models, also called Markov random fields is are ap-
propriate. Similar to directed graphical models, undirected graphical
models also define (in)dependence relations between individual vari-
ables. However, unlike conditional probabilities, we use symmetric
functions, called potential functions, that indicate the dependence be-
tween individual variables. The model, similar to the directed mod-
els, define a joint distribution over all variables, factorized based on
the model structure.12

Figure 9.8 shows an example undirected graphical model similar
to the naive Bayes example from Figure 9.6. The difference here is
that the dependences between variables are now specified with a
symmetric function φ(·), rather than conditional probabilities. The
joint probability defined by this networks is,

p(y, x1, . . . , xn) =
1

Z

n∏
i

φ(y, xi) .

Since we still have the assumption that the features (xi) are indepen-
dent given the class (y), the relations between them do not factor into
to expression of the joint distribution. The constant Z normalizes the

132 statistical nlp: course notes

joint distribution globally, it is simply a sum over the whole space of
variables. Except for small problems, calculation of Z is intractable.
As a result, most practical applications involve approximate estima-
tion of the joint probability.

The only requirement on the choice of potential functions is that
they have to return positive numbers. Otherwise, one is rather free
to chose the function, and the features that affect the value of the po-
tential function. In practice, the most common choice is exponential
functions, since they return positive values.

The undirected models are, in general, more flexible, and consid-
ered more powerful. This also means that they are computationally
more expensive to train. The sets of joint distributions that can be
expressed by directed and undirected graphical models are not the
same, but they intersect. Some distributions can be expressed by
both, some only by directed or undirected graphical models.

9.4 Alternative models for sequence labeling

Hidden Markov models are well-known, well-studied models for se-
quential data. They have been used in many fields, including compu-
tational linguistics. Since they are generative models, they can also
generate data, or more importantly, assign probabilities to the obser-
vation sequences. However, as in our part of speech tagging example,
their most common usage has been sequence labeling. In sequence
labeling we do not need to model the joint distribution. What we
really need is p(q | o), probability of the state sequence given the
observation. Hence, as noted earlier during the discussion of differ-
ences between generative and discriminative models, they put some
extra modeling effort that is not required for sequence modeling.
As a result, there are a number of discriminative sequence labeling,
which often perform better than HMMs on sequence labeling tasks.
We will briefly discuss two of these alternatives, maximum-entropy
Markov models and conditional random fields, briefly. Now that we have
a basic understanding of graphical models, it will be easy to describe
these models based on what we know about HMMs.

9.4.1 MaxEnt HMMs

Maximum-entropy (hidden) Markov models (MEMMs), or condi-
tional Markov models, are very similar to the HMMs. MEMMs also
model the state sequence as a Markov chain. However, instead of
estimating p(o | q), they directly estimate p(o | q). Figure 9.9 shows
the graphical model for a simple MEMM. The difference between an

q0 q1 q2 q3 q4 . . . qn

o1 o2 o3 o4 . . . on

Figure 9.9: A simple maximum-entropy
hidden Markov model (MEMM).

sequence learning 133

13 In practice, all we need to do is, to fit
a multi-class logistic regression model.
The formula is included here as it pro-
vides some insights into the relation be-
tween the logistic regression, and the
CRFs we will discuss next.

HMM and MEMM is simply the direction of the conditional depen-
dencies between the states and the observations. The advantage of
using an MEMM, however, is not directly visible from this picture.
The advantage comes from the fact that we now can estimate the
conditional probability p(q |o) directly using a discriminative prob-
abilistic model. In MEMMs, maximum entropy models, or multi-class
logistic regression, is used for this task. Once we do that, we can
use any feature we can extract from the observation sequence as a
predictor. For example, if a word starts with a capital letter, this is
a good cue for its POS tag in many languages. However, it is not
easy to include such features in an HMM model without increas-
ing the model complexity. In an MEMM, any feature we can extract
from any part of the observation sequence can be included as feature
for the logistic regression model predicting p(q | o). As a result, a
more representative graphical model describing the MEMM models
in practice is given in Figure 9.10.

q0 q1 q2 q3 q4 . . . qn

o
n

Figure 9.10: Another way to represent
an MEMM as a graphical model. Note
that now we can include features from
all items from the observed sequence.

Overall, an MEMM models the conditional probability distribu-
tion

p(q |o) =
∏
i

p(qt|qt−1,ot)

The conditional probability p(qt|qt−1,ot) is estimated using a max-
imum entropy (multi-class logistic regression, or softmax) classifier.
This means estimating the parameters wi in 13

p(qt|qt−1,ot) =
1

Z
exp

(∑
i

wifi(qt,qt−1,o)

)
(9.2)

where Z is the normalization constant that makes sure that the prob-
abilities of all classes sum to one.

MEMMs are discriminative models. Since they have the flexibility
of including extra surface features, and the fact that they do model
the data unnecessarily (for sequence labeling), they are generally bet-
ter than HMMs in sequence labeling tasks. However, this also means
that they cannot be used for tasks where assigning probabilities to
observations is required.

9.4.2 Conditional random fields

Conditional random fields (CRFs) are another popular model for se-
quence labeling. CRFs are related to the Markov random fields de-
scribed above. However, instead of modeling the joint distribution
P(o,q), CRFs model the conditional distribution P(q | o). CRFs can

134 statistical nlp: course notes

specify different independence structures depending on the problem
to be modeled. For sequence labeling problems, we are interested in
modeling a linear chain structure, which are called linear chain CRFs.
Since this structure is prevalent in NLP, the term CRF almost exclu-
sively refers to a linear chain CRF. A graphical representation of a
linear chain CRF is given in Figure 9.11.

q0 q1 q2 q3 q4 . . . qn

o1 o2 o3 o4 . . . on

Figure 9.11: A linear chain conditional
random filed model.

Given the above representation, the conditional probability modeled
by the CRF is factorized as

P(q |o) =
1

Z

n∏
i

φ(qt−1,qt,ot) .

In theory, similar to Markov random fields, we can use any positive
function φ(·), in the above formulation. However, in practice, an ex-
ponential function of linear combination of features is used, resulting
in

P(q |o) =
1

Z

n∏
i

exp

∑
j

wjfj(yi−1,yi,o)

 .

where fj(·) are feature functions (often binary features extracted from
the observation sequence and the past states); wj is the weight as-
sociated with the corresponding feature j; j ranges over feature in-
dexes; and i ranges over each step in the sequence. Note that, like in
MEMMs, we can use features from the whole observation sequence.

You should have also note the similarity with the multi-class logis-
tic regression, and hence the MEMM model defined in Equation 9.2.
There is a subtle difference: the CRF model define above normal-
izes the conditional distribution globally, while MEMM models nor-
malize it locally (the values multiplied are already probabilities in
MEMM). This seems to make a difference in practice. The MEMMs
exhibit a behavior called ‘label bias’. If there is a high-probability
transition from a particular label to another, MEMMs tend to disre-
gard the observation and follow this transition, while CRFs are not
sensitive to the this problem.

Similar to MEMMs, CRFs are discriminative models for sequence
labeling. They often perform better than both HMMs and MEMMs
on sequence labeling tasks. However, they also are computationally
more demanding. Again, since they are discriminative models, they
are not suitable for tasks where we need to assign probabilities to
observation sequences.

sequence learning 135

Summary

In this lecture we covered a number of models designed particularly
processing sequences. Hidden Markov models are generative mod-
els that model the joint probability of a hidden state sequence, and
an observation sequence. They are important tools in many disci-
plines, including in various tasks in NLP. Since HMMs model the
joint distribution of the observation and the hidden state sequence,
they can assign probabilities to the observed data. This is useful
for applications such as language models for speech recognition or
machine translation where estimating probabilities of utterances or
sentences are important. For sequence labeling, however, the strong
independence assumptions made by HMMs cause low performance
in many tasks.

We reviewed two other models, MEMMs and CRFs which are in
general better sequence labeling models than HMMs. Particularly
CRFs has been very influential since their introduction (Lafferty, Mc-
Callum, and Pereira 2001). Even though the common choice for
many sequence labeling tasks nowadays are (recurrent) neural net-
works, it is also common to use CRFs in combination with neural
networks as well. We will discuss neural networks for sequence pro-
cessing in another lecture.

We covered some of the computational issues with sequence pro-
cessing only in the context of HMMs. Most of the ideas, e.g., use
of Viterbi algorithm for decoding, is applicable to other methods
we discusses as well. For a more detailed and formal introduction,
the reader is referred to machine learning textbooks such as Bishop
(2006) and Murphy (2012).

Bibliography

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learn-
ing. Springer. isbn: 978-0387-31073-2.

Lafferty, John D, Andrew McCallum, and Fernando CN Pereira (2001).
“Conditional Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data”. In: Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pp. 282–289.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective.
Adaptive computation and machine learning series. MIT Press.
isbn: 9780262018029.

Draft lecture notes. Version: 3d8fa4f@2020-07-12; sequence-learning.tex cb

	Sequence learning
	Markov chains
	Hidden Markov models
	Graphical models: a brief divergence
	Alternative models for sequence labeling

