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Figure 2.1: Topics in elementary prob-
ability are generally taught with exam-
ples from drawing one or more colorful
balls from and urn. A simple experi-
ment with the setup above is drawing a
single ball from the urn. In this case, the
possible outcomes are balls with one of
three colors above. Probabilities are as-
sociated with set of outcomes.

In the above setup, probability of
drawing a red ball, P( ) is 4/9 Sim-
ilarly, P( ) = 4/9 and P( ) = 1/9.
We can also assign probabilities to set
of outcomes, for example, probability of
drawing a red or blue ball, P({ , }) =

8/9, and probability of the sample
space, P({ , , }) = 1.

If our experiments involve drawing
two balls with replacement (putting the
ball we draw first back before drawing
the other), then the outcomes are the all
combinations of two ball colors. Exam-
ples probabilities for the outcomes of
this experiment are P({ }) = 16/81,
P({ }) = 4/81, P({ , }) = 20/81.

2 Probability theory

In this chapter, we will review some of the basic concepts from the
probability theory. The concepts introduced in this chapter will be
very important in many of the subjects we will cover during the
course. Like the other background chapters, you may skip this chap-
ter if you are familiar with the probability theory.

2.1 Axioms of the probability

Probability is a measure of (un)certainty of an event. In daily us-
age, we often associate some events with some probabilities. We talk
about high- or low-probability events, or sometimes we express our
notion of probability by percentages or odds.

Formally, we quantify the probability of an event with a number
between 0 and 1. An event with probability of 0 is impossible, and
an event with probability of 1 happens with certainty. Otherwise,
any number in between, expresses the certainty we associate with
the occurrence of the event. For example, an event with probability
of 0.5 is as likely to happen as it may not.

The events we talk about are outcomes of trials (some sort of ex-
periment or observation). In general, an event is a set of outcomes.
The set of all possible outcomes of a trial is called its sample space,
and conventionally indicated by the Greek letter omega (Ω). Fig-
ure 2.1 demonstrate these concepts with a common (probably famil-
iar) example from typical lectures on elementary probability .

Formally, probabilities has to follow the following set of axioms.

1. P(E) ∈ R, P(E) > 0. Probability of an event E has to be a positive
number.

2. P(Ω) = 1. The probability of all possible outcomes of a trial is
one. Note that this also means that probability of no event can be
larger than 1.

3. For two disjoint events E1 and E2, P(E1 ∪ E2) = P(E1) + P(E2). In
general, for N disjoint events. P(E1 ∪ . . .∪ EN =

∑N
i=1 P(Ei).

The above three axioms forms the basis of all probabilistic state-
ments. The other rules that we will discuss later on can all be derived
from these three rules.

These axioms, hence the probability theory, defines how to use or
manipulate the probabilities. It does not specify what a probabil-
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1 Although, the value of a random vari-
able is not necessarily unpredictable, as
in the typical daily use of the term
‘random’. Most random variables we
study involve some uncertainties, but
also some regularities or structure that
we can exploit for making inferences.
Somewhat surprisingly, even some as-
pects of a ‘truly random’ processes in-
clude these tendencies, which is very
important for machine learning, and
statistical inference in general.

2 Technically, a random variable takes
real numbers. A more correct term
used for non-numeric random variables
is random element. We will be using the
term random variable for both cases.

ity is, and how to assign probabilities to events. There are different
schools of thought that assign probabilities to events using (some-
what) incompatible ways. Since uncertainty, hence probability, plays
an important role in any statistical study, we will encounter some of
these differences during the course of this course.

2.2 Random variables

The concept of random variable is central to the probability theory. The
value of a random variable is subject to uncertainties.1 The value
of a random variable depend on the outcome of a set of random
events. For example, we are often interested in studying outcomes
of experiments or observations that involve uncertainty such as

• height or weight of a person selected (randomly) form a popula-
tion

• length of a randomly chosen document

• whether an email is spam or not

• the first word of a book, or the first word uttered by a baby

In this context, we can think of a random variable as a (well-
defined) function from the set of outcomes (Ω) of an experiment
to real numbers. Clearly, the outcome of some of these trials are not
trivial to express as a real number. Often, for mathematical conve-
nience, an arbitrary mapping may be used, e.g., from a set of words
to consecutive integers. However, some of the useful quantities (e.g.,
expected value or variance) does only make sense for random events
for which a meaningful mapping to the (real) numbers exists. For
example, we can define random variables whose values are words
or syntactic representations of sentences (trees), but, in these cases
quantities like mean will not be useful (What is the average word?).2

Note that the values of random variables are not probabilities. Prob-
abilities are associated with the outcomes of the random experiment.

Mapping some outcomes to numbers is easy, for example, if we
are measuring the frequency of a sound signal, or counting the num-
ber of words in a document, the measurement already gives us a real
value. The mapping may not be trivial in some other cases, such as
whether the random variable representing a product review is posi-
tive or negative, or the part of speech of a word. In these cases, there
are often conventional methods for mapping these outcomes to num-
bers. For example, the Boolean variables (such as binary outcome of
a review) are typically mapped to 0 and 1 for negative and positive
outcomes respectively.

For trials having outcomes with more than two categories (as in
our part of speech example), a possible solution is to map them to
integers arbitrarily, for example, as on the row labeled ‘Integer‘ in
Table 2.1. However, this mapping implies an ordering, even though
the assignments are arbitrary. A more convenient method is to map
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Part of speech Noun Verb Adjective Adverb . . .

Integer 1 2 3 4 . . .
Binary vector 000001 000010 000100 001000 . . .

Table 2.1: Alternative numeric rep-
resentations for categorical (nominal)
variables.

3 Note that the coding as we describe
here involves some redundancy. We can
be slightly more economical by map-
ping one of the outcomes to all ze-
ros. Although this economy is not re-
ally useful for many purposes, it is
sometimes used (especially in statistics)
when one of the outcomes is a special
base case (coded as all zeros). This
makes comparison of other outcomes to
the base case easier.
4 If the outcomes/items (such as words)
represented have some features in com-
mon, we can even use real values
(rather than binary one-hot) in these
vectors. We will later discuss such
‘dense’ representations.

Table 2.2: Probabilities of all possible
values (x) of an example random vari-
able X (utterance lengths).

x P(X = x)

1 0.155
2 0.185
3 0.210
4 0.199
5 0.102
6 0.066
7 0.039
8 0.023
9 0.012
10 0.005
11 0.004

5 They are estimated from a real corpus
of spoken language, but we will delay
the details for now.

Table 2.3: Probability distribution of
variableX, associated with letter proba-
bilities. Note that the mapping between
the letters and the values of the random
variable x is arbitrary.

letter x P(X = x)

a 1 0.233
b 2 0.042
c 3 0.046
d 4 0.084
e 5 0.286
f 6 0.026
g 7 0.063
h 8 0.219

each outcome to a vector of binary (0 or 1) values, where we set only
a particular member of the vector to 1, and we set the rest to 0 for
a particular outcome. This representation is called one-of-k or one-hot
representation, and exemplified on the row labeled ‘Binary vector’
in Table 2.1. In statistical literature it is also called dummy coding.3

This particular representation is used quite often in machine learn-
ing while encoding categorical features or outcomes. For example
whether a particular word (out of all words in a dictionary) occurs
in a document or not.4

In the discussion above, we implicitly made a distinction between
two types of random variables. Some random variables are contin-
uous, they can take any real number as values (such as height or
frequency). Others, on the other hand, have discrete values. For
example, number of words in a document or sentence can only take
integer values, and whether a document is spam or not can have only
two values (true or false). This distinction between the continuous
and categorical random variables is important, in general, and in our
discussion of some important properties and specific distributions of
random variables below.

To make the discussion more concrete, we will use an example
hypothetical random variable. Assume that predicting the length
of utterances in a (particular type of) dialog is important for our
purposes. So, our random variable, X, is a discrete variable, taking
only integer values (length of utterances). For simplicity, we will also
assume that the longest possible utterance is 11 words.

Table 2.2 lists each possible value of X, with its associated proba-
bility. We denote the random variable with uppercase X, while low-
ercase x stands for a possible value of the variable. The first row
of Table 2.2 shows the P(X = 1), whose probability turns out to be
0.155. For now, we do not ask where these probabilities come from.5

However, it is important to note that the probabilities in the table
sum to 1 (except for possible rounding error).

In our utterance-length example (in Table 2.2), there is a natural
mapping between the utterance length and the value of the random
variable. The value of the random variable is simply the integer
that corresponds to the utterance length in words. This mapping
is not always straightforward. To demonstrate that we give another
hypothetical example in Table 2.3.

We assume that we are working on an ancient language, which is
written only with eight letters. The random variable X is a mapping
between the event (observing a particular the letter) and the value
of the random variable (x). This mapping is more arbitrary than the
example with sentence lengths above. Here, we use integers, but one-
hot encoding would be more convenient in real-world applications.



18 statistical nlp: course notes

, 10

0.1

0.2

20

0.1

0.2

30

0.1

0.2

40

0.1

0.2

50

0.1

0.2

6
0

0.1

0.2

70

0.1

0.2

8
0

0.1

0.2

90

0.1

0.2

100

0.1

0.2

110

0.1

0.2

Figure 2.2: Graphical representation of
probability mass function defined in Ta-
ble 2.2.
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Figure 2.3: Example probability density
function (PDF). Area under the whole
curve, potentially stretching to infinity,
is 1 units. The area under a particular
interval is the probability that the ran-
dom variable takes a value within the
interval.
6 The plot actually shows a well-known
density function. Precisely, this is
the probability density function of the
gamma distribution with parameters
k = 3, θ = 0.2, but this is not im-
portant for this introduction.

In both examples, we specified probability of a particular value of
a random variable like P(X = x), for example P(X = 1) in Table 2.3
is 0.23. However, when there is no ambiguity, we will skip the name
of the random variable and write, for example, P(1) = 0.23, or even
P(a) = 0.23.

2.2.1 Probability distributions

A probability distribution provides a mapping between values of a ran-
dom variable (or the corresponding outcomes of a random trial) to
probabilities. If the random experiment at hand can only have fi-
nite number of outcomes, a possible way to define the probability
distribution is a vector or table of probabilities (as in Table 2.3, for
example). In many cases, however, we use more compact function to
specify the probability distribution. In the following we will revisit a
few common ways of specifying probability distributions.

2.2.2 Probability mass function

Probability mass function (PMF) is a function that maps the values of a
discrete random variable to their probabilities. The PMF of a random
variable maps all possible values of the random variable to exact
probability of the associated event. For example, probability of an
utterance of length 3 is 0.21 in our example (Table 2.2). A probability
mass function defines a discrete probability distribution. Table 2.2
defines such a PMF, which is shown graphically in Figure 2.2.

2.2.3 Probability density function

Continuous random variables do not have probability mass func-
tions, but analogously they can be defined through a probability dis-
tribution function (PDF). For continuous distributions, the probability
of a single value of the random variable is zero. We can only talk
about non-zero probabilities of intervals. This may be unintuitive at
first sight. However, if you consider the fact that there are infinite
number of real numbers between any arbitrary range [a,b] (a 6= b),
the probability of any single value is statistically equivalent to zero.

As an example of a continuous random variable, suppose we were
measuring the durations of the utterances rather than the number of
words as in our discrete random variable example, we cannot assign
a non-zero probability to an utterance being 1.40 s. However, we can
assign a probability to a range, say between 1.20 s and 1.60 s. As a
result, the values of a PDF are not probabilities. Figure 2.3 shows
a probability density function. For the sake of demonstration, we
will pretend this to be the distribution of durations of utterances in a
spoken language corpus.6 Figure 2.3 clearly shows that the values of
the PDF are not probabilities. For example, the value corresponding
to x = a is grater than 1. Another important property of the PDF,
more difficult measure from the figure, is that the area under the
curve is 1 unit. Although probabilities of individual real numbers
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7 A common convention for distin-
guishing, a PMF from a PDF is using
uppercase P() for the former and low-
ercase p() for tha latter. P(X = x)

yields the probability of discrete ran-
dom variable being x, but the values
returned by p() are not probabilities,
although higher values will indicate
neighborhoods of high probability den-
sity.

Table 2.4: The values of probability mass
function (column 2) and cumulative dis-
tribution function (column 3) of the ear-
lier example random variable, X, pre-
sented in Table 2.2.

x P(X = x) P(X 6 x)

1 0.155 0.155
2 0.185 0.340
3 0.210 0.550
4 0.199 0.749
5 0.102 0.851
6 0.066 0.917
7 0.039 0.956
8 0.023 0.979
9 0.012 0.990
10 0.005 0.996
11 0.004 1.000
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Figure 2.4: Graphical representation
of cumulative distribution function de-
fined in Table 2.4.
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Figure 2.5: A graphical representation
(histogram) of the sample (1, 2, 3, 3,
3, 4, 4, 5, 7, 11). Dashed orange line
marks the mean.

are zero, we can calculate the probabilities of ranges, like the one
highlighted in Figure 2.3. A PDF defines a continuous probability
distribution similar to a PMF defines a discrete distribution. 7 The
probability is simply the definite integral of the PDF in the interval
we are interested in.

P(a 6 x 6 b) =
∫b
a
p(x)dx

We will give brief descriptions of some of the important continu-
ous probability distributions later in this chapter.

2.2.4 Cumulative distribution function

Cumulative distribution function (CDF), or distribution function of a ran-
dom variable X, FX(x), yields the probability that X will take a value
less than or equal to x.

FX(x) = P(X 6 x)

In case of discrete distributions, it is simply the sum of probabilities
of all values up to and including x. And, for continuous distribu-
tions, it is the area of under the probability density function in inter-
val [−∞, x]. As may you have already guessed, to evaluate the value
of the CDF of a continuous random variable, we need to integrate
the PDF in this range instead of summing. Output of a CDF is a
probability regardless of whether the random variable is continuous
or discrete. The cumulative distribution function plays an important
role in statistics, particularly in hypothesis testing.

Table 2.4 repeats the probability mass function from Table 2.2 (in
column 2), and also shows the values cumulative distribution func-
tion. Note that the CDF converges to 1.0 at the maximum value of
the random variable X.

2.2.5 Expected value

Expected value of a random variable is its arithmetic mean (µ). Given
a list of numbers (a sample), their arithmetic mean is simply their
sum divided by the total number of numbers in the list. Assume
that we have the following numbers, say as the length of utterances
of interest in a (small) spoken language corpus:

1, 2, 3, 3, 3, 4, 4, 5, 7, 11

To find the arithmetic mean, we simply sum these numbers up, and
divide the number of items in our list. Which gives us 4.3.

Rather than a fixed sample as in the example above, we often
need to calculate the mean of a probability distribution, defined as a
set of numbers with their probabilities, we calculate the average by
weighting each value with its probability. The mean, or the expected
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8 The mean, however, is the value that
minimizes the prediction error. That is,
for a large number of draws from the
distribution, the average difference be-
tween the mean and the draws is the
smallest, in comparison to any other
number.
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Figure 2.6: The histogram in Figure 2.5
repeated. This time we also mark
median (m, red dashed line) and the
mode, and the mode.
9 Technically any number that satisfies
inequalities in (2.4) is a median, which
is any number between 3 and 4 (not
including). In general, m is not guar-
anteed to be unique, but for the sake
of simplicity, we will continue talking
about ‘the median’ of a distribution.

value, of the probability distribution in Table 2.2 is

0.155× 1+ 0.185× 2+ 0.210× 3+ 0.199× 4+ 0.102× 5+
0.066× 6+ 0.039× 7+ 0.023× 8+ 0.012× 9+ 0.005× 10+

0.004× 11 = 3.516 . (2.1)

Note that the expected value is not (necessarily) the most likely
value. In our example, it is even be a value that the random variable
cannot take.8 Nevertheless, it is an important quantity indicating the
central tendency of a probability distribution.

The expected value of a discrete random variable is

E[X] =
∑
x

P(x)x. (2.2)

where x ranges over all values of X, and P(x) is a shorthand for
P(X = x), the probability of a random variable X taking the value
x as defined by its probability mass function. In plain words, we
multiply each value with its probability, and sum them up.

In general, the expected value of a function of a random variable
E[f(X)] can be calculated using,

E [f(X)] =
∑
x

P(x)f(x). (2.3)

In Equation 2.2 above, we simply used the identity function f(x) = x.
For continuous variables, we need an infinite sum, so, we integrate

rather than sum:

E [f(X)] =

∫∞
−∞ p(x)f(x)dx

Note that, here, p(x) is a probability density function.

2.2.6 Median and mode

Like the expected value, median and mode are two other quantities
(statistics) that are useful in characterizing the central tendency of
probability distributions.

The median of a random variable is the value that splits the prob-
ability mass (or density) into two equal parts. More formally, for a
random variable X, the median is defined as a number m that satis-
fies

P(X 6 m) >
1

2
and P(X > m) >

1

2
. (2.4)

Going back to our finite sample of numbers, [ 1, 2, 3, 3, 3, 4, 4, 5, 7,
11 ], the easiest way to find the median is to find the number that
splits the ordered list into two equal halfs. For odd number of items,
this is the items in the middle. For even number of items, as in our
case, median is conventionally defined as the mean of the two middle
numbers, which is 3.5 for our example.9
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−5 5

Figure 2.7: An example multimodal (bi-
modal) continuous probability distribu-
tion.

−5 5

Figure 2.8: Two probability distribu-
tions with the same mean, median and
mode, but different variances. More pre-
cisely, both distributions are Gaussian
distributions with µ = 0, and σ = 0.7
(narrow, blue) and σ = 1.3 (wide, or-
ange).

Given a probability distribution, the median is found simply by
solving the inequalities above for m. For example, for a continuous
probability distribution, that would mean solving∫m

−∞ p(x)f(x)dx 6
1

2

for m.
The mode of a finite sample is the value that occurs most often.

In our example data above, the most frequent value is 3, so it is the
mode (see Figure 2.6). The mode of a probability distribution is the
value(s) that correspond to maxima of probability mass or density
functions. The examples we had so far are unimodal, they have only
one mode. However, some distributions can be bimodal, or in gen-
eral, multimodal. A probability distributions is called multimodal, if
there are multiple modes (peaks with possibly different heights), as
in Figure 2.7.

Multimodal distributions are interesting, as they often indicate a
confounding variable. For example, distribution of heights or weights
of university students are probably bimodal, since the differences in
gender will result in having two peaks around the means of males
and females.

The mean, median and mode are measures of central tendency. The
mean is most commonly used measure of central tendency in many
tasks in statistics and machine learning, since it has nice algebraic
properties. However, as you can see in Figure 2.6, mean is affected
from extreme values. Since the distribution in the figure is skewed,
and there are extreme values (i.e., the effect of 11 in the figure is much
higher than the other data points closer to the center), mean is moved
from the center of the distribution towards these extreme values. The
median is not affected by extreme values, but it does not have the
same nice algebraic properties. The median is often used in statistics
as a robust measure (a measure that is not affected by outliers) of
central tendency. The mode is easy to interpret, but it also lacks
the nice algebraic properties of mean. Furthermore, mode is only
determined by the maxima, it is not affected by the other values in
the distribution at all. For symmetric unimodal distributions (such
as Gaussian distribution that we will briefly introduce below), the
mean, median and mode are the same.

2.2.7 Variance and standard deviation

The mean, median and mode are measures of central tendency of a
distribution. They all are very useful as single-number summaries.
However, as any summary, they tell only part of the story. Another
aspect of a probability distribution is its spread. Standard deviation
and variance are the two (related) measures of spread.

Figure 2.8 presents two distributions with equal center, but dif-
ferent spread. Variance is one of the measures that quantify this
difference. It is defined as

Var(X) = E[(X− E[X])2] .
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10 Both formulations result in loss of
precision if implemented as is in a
computer program. There are alterna-
tive formulations that are numerically
(more) stable.

11 You are encouraged to perform this
calculation.

12 If you perform the calculations as
shown, you will find a different value
(3.872) rather than the value displayed.
This has to do with the fact that the
numbers displayed here are rounded,
calculating the variance using Equa-
tion 2.5 is numerically unstable. This is
also a problem in real use since com-
puters also represent real numbers with
a limited precision. In practice other,
numerically stable, formulations (algo-
rithms) are used.

0 1 2
0

0.5

1

Figure 2.9: A (positively) skewed prob-
ability density function. This is the
same distribution from Figure 2.3. In
addition, we mark the location of the
mean (vertical dashed line, 0.60). Note
that larger part of the area under the
curve falls to the left of the mean.
The distribution has a longer right tail
(hence, the expected value is ‘pulled to-
wards’ the extreme values on the tail,
compared to mode and median.).

In plain words, variance is the mean of the squared differences of
the values of the random variable from its mean. It can be shown
trivially that this formula is identical to E[X2] − (E[X])2.10 Variance
is often easier to manipulate algebraically. However for quick and
easy interpretation, its square root, standard deviation, is more useful,
since it is in the same units as the random variable itself. Standard
deviation is often denoted using Greek letter sigma (σ), then variance
is naturally denoted by σ2.

For a finite sample of size n, or a set of outcomes with equal
probabilities, we can calculate the variance using the formula,

1

n

n∑
i=1

(xi − µ)
2

where µ is the arithmetic mean, or the expected value. Getting back
to our example sample [ 1, 2, 3, 3, 3, 4, 4, 5, 7, 11 ], we calculate
the variance by subtracting the mean (4.3 as calculated Section 2.2.5)
from each number, squaring them, summing them up, and dividing
the number of items in the sample, which is 7.41.11 The standard
deviation is then

√
7.41 = 2.72.

To calculate the variance of a discrete distribution (rather than a
sample) from its PMF, remember that expected value of any function
of a random variable can be computed using Equation 2.3. Since the
squared difference from mean is a function of the random variable,
the expected value of it, the variance, is

n∑
i=1

P(xi)(xi − µ)
2 (2.5)

For our utterance-length example, this leads to12

0.155× (1− 3.516)2+ 0.185× (2− 3.516)2+ 0.210× (3− 3.516)2+

0.199× (4− 3.516)2+ 0.102× (5− 3.516)2+ 0.066× (6− 3.516)2+

0.039× (7− 3.516)2+ 0.023× (8− 3.516)2+ 0.012× (9− 3.516)2+

0.005× (10− 3.516)2+ 0.004× (11− 3.516)2 = 3.886

The standard deviation is, then,
√
3.872 = 1.968. Note that, unlike

the variance, the standard deviation is in the same units with the
data. So, we can say that the standard deviation is 1.968 words.

For continuous distributions, as you should already be expecting,
we replace the sum in Equation 2.5 with integral. The other proper-
ties of variance and its interpretation do not change.

2.2.8 Symmetry and skewness

Besides the spread (measured by variance or standard deviation),
there are other important properties of probability distributions. Here,
we will informally note another property, skewness, that we will some-
times make use of. We have already used some terms like ‘symmet-
ric’ or ‘asymmetric’ distribution. A symmetric probability distribution
has the same amount of probability mass on both sides of its mean.
On the other hand, an asymmetric probability distribution is skewed, it
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x ∼ Unif(a,b)

n = b−a+ 1

1
n

. . .
a b

Figure 2.10: Probability mass function
of the discrete uniform distribution.
13 Remember that the interval [a,b]
(with square brackets) indicates an in-
clusive interval on both ends. Hence,
the total number of integers in this in-
terval is b−a+ 1.
14 For those who like a bit of math, it
is a nice exercise to try to derive the
variance expressions for both continu-
ous and discrete uniform distributions.
The important bit you need to remem-
ber is variance is E[(X−E[X])2]. For
discrete uniform distribution, you will
also need to know how to calculate the
sum of the squares of consecutive inte-
gers. For the continuous uniform distri-
bution, you will need to integrate poly-
nomials.

has more probability mass on the right or left side of its mean. The
ends of the probability distributions where there is little probability
mass are called the tails of a distribution. A positively skewed distribu-
tion has a longer right tail, while a negatively skewed distribution has
a longer left tail.

2.3 Some well-known probability distributions

Some natural processes generate quantities that follow certain well-
known probability distributions. In this section we will introduce
some of these well-known probability distributions. Probably, the
most well-known probability distribution is the Gaussian, or the nor-
mal, distribution with the bell-shaped density function. These dis-
tributions can be specified by a set of parameters. For example, the
normal distribution is generally parametrized by its mean µ, and the
standard deviation σ (or equivalently its variance σ2). A common
notation to indicate that a random variable follows a known proba-
bility distribution is

X ∼ Normal(µ,σ2) or X ∼ N(µ,σ2).

where X is the random variable, and ‘Normal’ or N is the conven-
tional name or abbreviation for the distribution. Most distributions
have alternative parametrizations that may be convenient in differ-
ent applications. Usually, however, one of the parametrizations is
considered as being canonical or standard. In case of the normal
distribution, the mean (µ) and variance (σ2) are the standard param-
eters. However, the normal distribution is sometimes parametrized
by its mean and precision (inverse of variance, τ = 1/σ2).

2.3.1 Uniform distribution

There are both continuous and discrete flavors of the uniform distri-
bution. The discrete uniform distribution assigns equal probabilities
to all values in an interval [a,b].13 The canonical parameters of the
uniform distribution are the end points of the range a and b. The

mean and median are a+b2 , and the variance is σ2 =
(b−a+1)2−1

12 .
Continuous uniform distribution is similar to the discrete one. It

is also parametrized by the extreme values in the interval, a and
b. It’s mean and median are a+b

2 . The variance formula is slightly

different ( (b−a)
2

12 ).14

2.3.2 Bernoulli distribution

A Bernoulli trial is a simple random experiment with two outcomes.
The most common text-book example of a Bernoulli trial is a coin
flip. It can yield either heads (H) or tails (T). As a more practical
example, we can also view spam detection as a Bernoulli trial: a
given email is either spam or not. So, any email you receive is a
Bernoulli trial. Or similarly, if we want to predict the gender of
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15 The outcome mapped to 1 is some-
times called ‘success’, or the ‘positive
outcome’. The outcome mapped to 0 is
sometimes called ‘failure’, or the ‘neg-
ative’ outcome. However, the assign-
ment is generally arbitrary, or by con-
ventions that does not always reflect the
semantics of the words (e.g., a medi-
cal diagnostic indicating an illness may
be said to have returned a ‘positive re-
sult’).

16 The binomial coefficient (also read as
‘n choose k’) is defined as(

n

k

)
=

n!

k!(n−k)!
.

It yields the number k successes (with-
out ordering) in n trials. It has an im-
portant quantity for many combinato-
rial problems, among others. For ex-
ample, in an experiment involving four
independent coin tosses, there will be
24 = 16 possible outcomes. If we are
interested in all outcomes with 3 heads
(arbitrarily labeled as ‘success’),(
4

3

)
=
4!

3!1!
=
1× 2× 3× 4
1× 2× 3× 1

= 4 .

You can verify this by exhaustively list-
ing all outcomes of four coin tosses,
where the only configurations with
three heads are THHH, HTHH, HHTH, HHHT.

the author of a document (female or male). Yet another example:
whether the output of a machine learning system for a single test
instance is correct or incorrect.

The Bernoulli distribution characterizes the outcomes of Bernoulli
trials. We map one of the outcomes to 1 and the other outcome to
0.15 Then, the random variable X distributed according to Bernoulli
distribution has a single parameter p such that P(X = 1) = p and
P(X = 0) = 1− p. For specifying the Bernoulli PMF, often an alterna-
tive notation is used for convenience:

P(X = k) = pk(1− p)1−k

where k is either 0 or 1. Note that when k = 0, the first term become
1 (p0 = 1 for any p) yielding 1− p, and for k = 1 the second term is
1 and the result is p.

For example, in a coin toss trial with a fair coin, p = 0.5, both out-
comes are equally likely. In my email account, announced publicly,
the probability of a new email being spam is probably well above 0.5
(but fortunately spam filters seem to do a fine job, thanks to proba-
bility theory).

The expected value of a Bernoulli-distributed random variable is
p, and the variance is p(1 − p). Note that the variance is highest
when p = 0.5.

As you probably guessed from the examples above already, Bernoulli
distribution has a wide range of applications despite its simplicity.

2.3.3 Binomial distribution

The binomial distribution is a generalization of the Bernoulli distri-
bution to n trials. The value of the random variable is the number
of ‘successes’ in the experiment. The binomial distribution has two
parameters, p and n. Similar to the Bernoulli distribution the param-
eter p is the probability of the success in a single trial, and n is the
number of trials. Given these parameters, 16

P(X = k) =

(
n

k

)
pk(1− p)n−k

µ = np

σ2 = np(1− p) .

Note that the notation
(
n
k

)
used in the definition of the probabil-

ity mass function is the binomial coefficient. The rest of the PMF
function is simply the probability of k successes in n independent
Bernoulli trials with parameter p. Note also that like the Bernoulli
distribution, the variance is highest at p = 0.5, and decreases as p
gets closer to 0 or 1.

A typical example of the binomial distribution is n consecutive
coin tosses (with a biased or fair coin). But we will, for example, use
it for the number of correctly parsed sentences by a parser (out of all
sentences in a test set).
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17 Note that there are only k− 1 inde-
pendent p parameters, since they have
to sum to 1.

p(x)

x

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2.11: An example categorical
PMF: probabilities of obtaining values
1 through 12 in a roll of two fair dice
as either on the face of a single die,
or as the sum of both. This distribu-
tion has to be (implicitly) internalized
by any good backgammon player.

18 Based on this analogy, some authors
call categorical distribution ‘multi-
noulli’ distribution.

2.3.4 Categorical distribution

The categorical distribution is similar to Bernoulli distribution, but
instead of binary outcomes, it characterizes experiments with k mu-
tually exclusive outcomes. A typical example is the outcome of a dice
roll. A categorical distribution with k mutually exclusive outcomes
is parametrized by a vector p ∈ Rk whose elements, p1, . . . ,pk, indi-
cate the probability of the corresponding outcome.17 Since the events
we model are exhaustive and mutually exclusive, they form the sam-
ple space, and their probabilities sum to 1.

It should be already clear that the Bernoulli distribution is a spe-
cial case of the categorical distribution, where k = 2. However, un-
like for Bernoulli distribution, starting the index from 1 rather than
0 is more convenient. Note that the assignment of outcomes to the
integer values is often arbitrary.

Given a random variable X is distributed with categorical distri-
bution with parameters k and p1, . . . ,pk,

P(X = xi) = pi

E[X = xi] = pi

Var(X = xi) = pi(1− pi)

Alternatively, we can write the probability mass function as

P(X = x) =

k∏
i=1

p[i=x]i

where the notation [i = x] is 1 if i = x is true, 0 otherwise.
In machine learning, instead of integers in the interval [1,k], a

common practice is to use k-valued ‘one-of-k’ vectors as described
on page 17. In this notation, we can write the PMF as

P(X = x) =

k∏
i=1

p
xi
i

where x is one-of-k vectors. Since only one of the xi will be non-zero
for a given x, this is another convenient way to write the PMF of
the categorical distribution. This notation also works well with the
multinomial distribution we will discuss next.

2.3.5 Multinomial distribution

The multinomial distribution arise when a k-way event is repeated n
times. It is a generalization of the categorical distribution, where a
categorical distribution is a multinomial distribution with n = 1. The
relation between categorical distribution and the multinomial distri-
bution is the same as the relationship between the binomial distri-
bution and the Bernoulli distribution.18 Sometimes the distinction
between the categorical and multinomial distributions are blurred,
but not paying attention the differences may lead to incorrect results
in some cases. It is also a generalization of the binomial distribution
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19 A warnings is (again) in order: while
doing calculations with too large and
too small numbers as in here, numerical
instabilities (underflows or overflows)
may occur.

with k = 2. Bernoulli distribution is also a special case, where k = 2

and n = 1.
The multinomial distribution is an important distribution for ma-

chine learning, and particularly for natural language processing. The
outcome of a k-way multinomial event is conveniently expressed,
with a k-valued vector, where elements correspond to the counts of
corresponding outcomes. For example, we may be interested in the
distributions of part-of-speech tags in a document. For simplicity,
say we are only interested in the distribution of nouns, verbs and
adjectives. We can map these categories to consecutive integers (ar-
bitrarily), 1, 2, 3, and the ‘other’ category to 4. On a 100-word doc-
ument a possible outcome is (33, 15, 9, 43), which means there were
33 nouns, 15 verbs, 9 adjectives and 43 other POS categories. This
is a direct extension of the one-of-k representation we used for the
outcome of a categorical random variable. We also carry over the
parameter vector p which gives the probabilities of corresponding
categories. The probability mass function then can be written as

P(X = x) =
n!

x1! . . . xk!

k∏
i=1

p
xi
i .

Note that the first product in right hand side makes sure that the
order of events does not matter.

To make things more concrete, let’s return to our example with
POS tags, where our sample was x = (33, 15, 9, 43) and assume that
we are interested whether this document belongs to an author who is
known to write documents with a distribution p = (0.3, 0.2, 0.1, 0.4).
Now we can try to find the probability of such a document coming
from this probability distribution by placing all into the PMF for-
mula.19

P(X = (33, 15, 9, 43)) =
100!

33!15!9!43!
0.3330.2150.190.443 = 0.0005283718

We will delay the interpretation of this probability, but you should
ask yourself what that probability is exactly, and how to interpret it.
What have we found out? All the simplifications aside, does this
document belong to the author? Is this probability large (a strong
indication) or not?

The expected number of times a particular outcome, xi, is ob-
served in n trials is E[xi] = npi. The variance (of a particular out-
come) is also similar to binomial distribution, Var(xi) = npi(1−pi).

2.3.6 Beta distribution

The distributions we have discussed so far has been all discrete prob-
ability distributions. We will briefly introduce a few important con-
tinuous distributions as well, starting from a simple distribution.

The Beta distribution is a continuous distribution with a support
on a bounded interval between 0 and 1. This means the probability
distribution function is defined on this interval, which makes the
Beta distribution ideal for distributions of probability values. This
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Figure 2.12: Beta distributions with
equal α and β parameters. 2 (blue), 5
(purple), 1 (brown), 0.5 (orange), 0.10
(red). All distributions are symmetric
with µ = 0.5. The parameters α =

β = 1 leads to the continuous uniform
distribution in [0,1]. As α and β in-
crease, the variance of the distribution
decreases. You should also note that
the distribution becomes similar to the
Gaussian distribution for large values
of α and β.
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Figure 2.13: Example asymmetric beta
PDFs: α = 5, β = 2 (blue), α = 2,
β = 5 (orange), α = 1, β = 0.5 (pur-
ple), α = 1, β = 2 (brown).

may sound too abstract at first, but think about having a machine
that bends coins some random amount, resulting in bent coins with
varying probability, p, of turning up heads in a coin toss trial. We
first put our coins through the machine, and then perform the coin
flip. Coin flip part is modeled properly by a Bernoulli distribution,
and what our coin bending machine does can be modeled nicely
by the Beta distribution. This sort of modeling decisions often arise
in Bayesian statistics, where the Beta distribution is said to be the
conjugate prior of the Bernoulli and binomial distributions because of
the convenience of using these two distributions together.

The Beta distribution is parametrized by two positive real num-
bers, α and β. The probability density function of the Beta distribu-
tion is

p(x) =
xα−1(1− x)β−1

Γ(α)Γ(β)
Γ(α+β)

.

Fully understanding this equation is not essential for our purposes.
However, you should note the similarity between the numerator of
the right hand side and the probability mass function of the Bernoulli
distribution. The gamma function (Γ()) in the denominator is a gen-
eralization of factorial function to real numbers (for positive integers
n! = Γ(n+ 1)). Note that p(x) is a probability density function. Un-
like probability mass functions of the discrete probability distribu-
tions we were discussing so far, it does not return probabilities.

The mean and variance of the Beta distribution is,

E[X] =
α

α+β

Var(X) =
αβ

(α+β)2(α+β+ 1)

Again, the details are not essential for our purposes, but there are a
few properties of the distribution to note. If α and β are equal, the
mean will be 0.5, and the distribution will be symmetric. Figure 2.12
presents example PDFs with equal α and β. If α is larger than β,
higher probability mass will be reserved for the values over 0.5. Oth-
erwise, the probability mass will be shifted to the left. Figure 2.13
presents a few example Beta PDF functions with different α and β
values.

Returning to our coin-bending machine example that produces
bent coins according to various Beta distributions in Figure 2.12 and
2.13, we would have different expected p values for the coin tosses.
For example, if α is larger than β, e.g., the blue distribution in Fig-
ure 2.13, the machine would produce coins that yield heads (arbi-
trary ‘success’ or ‘positive’ category) most of the time. Otherwise,
e.g., the orange distribution, the machine would produce coins that
produce tails most of the time. For the symmetric distributions,
α = β > 1 configuration produces coins with that are close to a
fair coin, with increasing fairness with increasing α and β. When
α = β < 1, each coin is likely to be biased towards heads or tails, but
with equal probability density shared by both types of unfair coins.
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Figure 2.14: Normal PDF, with µ = 0

and σ = 1.

2.3.7 Dirichlet distribution

Dirichlet distribution is a generalization of the Beta distribution. Like
the Beta distribution, the support of Dirichlet distribution is over real
numbers in interval [0, 1], but instead of parameters α and β, we
have a k-dimensional vector α. As a result the Dirichlet distribution
can express a distribution over k probabilities, making it ideal to
serve as priors to categorical and multinomial distributions which are
parameterized by a vector of probabilities. The PDF of the Dirichlet
distribution is

p(x) =

∏k
i=1 x

αi−1

Γ(α)Γ(β)
Γ(α+β)

.

Again, it is not essential to fully grasp the mathematical definition.
For our purposes, it suffices to know that the Dirichlet distribution
assigns probabilities to a vector of probabilities.

A well-known application of the Dirichlet distribution in the nat-
ural language processing is the model known as latent Dirichlet al-
location (LDA), which we will introduce later. Here we will give
a brief informal description as a way to motivate the Dirichlet dis-
tribution. The LDA models a set of documents as having ‘latent’
(unobserved, unlabeled) dimensions corresponding to ‘topics’. For
example, a document may be about ‘politics’, but maybe also a bit
of ‘finance’ is mixed too, but no or little ‘sports’. Each document is
modeled as a multinomial distribution over words. The probability
parameters of the multinomial distributions, then, are determined by
the topic distribution which is assumed to be a Dirichlet distribution.

2.3.8 Gaussian distribution

The Gaussian (or normal) distribution is probably the most important
distribution for probability and statistics. It arises naturally for many
continuous random variables. We will discuss its importance more
when we discuss the central limit theorem below. For now, we will
only define some properties of it. The normal distribution is the
well-known distribution with the bell-shaped probability distribu-
tion function. It is parametrized by the mean µ and the variance σ2.
The formula for the normal PDF is

p(x) =
1

σ
√
2π
e
−

(x−µ)2

2σ2

The normal distribution with µ = 0 and σ = 1 is called the standard
normal distribution. Changing µ changes the location of the distribu-
tion without affecting its shape, and changing σ changes the scale
of the distribution (larger the sigma wider/shorter the PDF) without
affecting its center. As a result the µ and σ (or σ2) are sometimes
called location and scale parameters respectively.

A useful fact (especially in statistics) about the normal distribu-
tion is that approximately 68% of the probability mass (darkest area
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−5 5

Figure 2.15: Standard normal distri-
bution (blue) in comparison to the t-
distribution with one degree of free-
dom (v = 1) (orange). The t-
distribution has more probability mass
at the tails. Note that this demon-
stration shows a particularly exagger-
ated difference since v = 1 is the case
with the largest difference between the
t-distribution and the standard normal
distribution. The difference diminishes
with increased degrees of freedom.

Table 2.5: Joint probability table for let-
ters and dialects in our example ancient
language.

let. east north south

a 0.198 0.007 0.028
b 0.029 0.012 0.001
c 0.025 0.009 0.012
d 0.062 0.015 0.007
e 0.172 0.097 0.017
f 0.017 0.003 0.007
g 0.050 0.013 0.000
h 0.146 0.044 0.029

in Figure 2.14) falls between the interval µ±σ , and 95% of the prob-
ability mass (the second darkest shade in Figure 2.14) falls between
the interval µ± 2σ.

2.3.9 Student’s t-distribution

The Student’s t-distribution (or simply t-distribution) is a probability
distribution similar to the normal distribution. It has a central role
in statistics, particularly in hypothesis testing. We will not go into
details of description of the t-distribution here (although the name
has a fun story that has to do with beer). The main use of the t-
distribution is when one wants to estimate the parameters (µ) of a
distribution associated by a population from a limited sample. It
turns out, such an estimate is overconfident if one assumes that the
sample means are normally distributed. The t-distribution corrects
this since it has ‘heavier tails’ in comparison to the normal distribu-
tion. It has a single parameter degrees of freedom, v (we compare it
with a standard normal distribution with µ = 0 and σ = 1). As the
degrees of freedom increase, the distribution approaches to normal
distribution. Figure 2.15 compares the t-distribution with the normal
distribution.

2.4 Joint probability

Our discussion of the random variables so far involved only a single
value. Such random variables are called univariate random variables.
For almost any practical application of probability, we have to deal
with multiple (univariate) random variables. Multiple random vari-
ables that take real numbers define a multivariate distribution. Joint
probability distribution for a set of discrete random variables may
be specified by a (multi-dimensional) table listing probabilities of all
possible combinations of the values each random variable take. In
general, we note the joint probability mass function of two random
variables X and Y as P(X, Y). Analogously, a probability density func-
tion of a bivariate random variable (joint probability density of two
continuous random variables) is noted as p(X, Y). The notation nat-
urally extends to distributions with more than two variables, e.g.,
P(X, Y,Z) or p(X, Y,Z).

For an example joint probability distribution, we will return to
the letter probabilities from our hypothetical ancient language with
eight letters (Table 2.3). It turns out, the ancient language we deal
with had a few distinguishable dialects. The experts (of course hy-
pothetical) distinguish northern, southern and eastern dialects, and
they indicate that the official eastern dialect was more common (with
probability 0.70) in the transcripts that survived. The others are less
common, with probabilities 0.20 and 0.10 for north and south respec-
tively. Note that ‘dialect’ of a document forms another categorical
distribution (or multinomial distribution depending on what we are
modeling).
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Table 2.6: Conditional probabilities of
P(letter | dialect).

let. east north south

a 0.283 0.033 0.284
b 0.041 0.062 0.009
c 0.036 0.047 0.116
d 0.089 0.074 0.069
e 0.246 0.486 0.165
f 0.024 0.013 0.067
g 0.072 0.065 0.000
h 0.208 0.220 0.289

We present joint probabilities of letters and dialects in Table 2.5.
The table specifies the joint probability distribution P(letter, dialect),
where ‘letter’ and ‘dialect’ are the random variables. Note that the
probabilities in each cell in this table corresponds to probabilities of
joint events, observing a particular letter belonging to a particular
dialect in the documents we have. For example, the first row and
the second column indicates the probability of picking a letter from
our corpus, which turns out to be the letter ‘a’ within a document
written in the ‘northern’ dialect. We represent this probability using
the notation P(letter=a, dialect=north). When the random variable
we refer to is clear from the values, we will simplify this notation as
P(a, north).

In Table 2.5, all values on the first column is naturally higher, since
this column corresponds to the most common dialect. Similarly, the
probabilities on fifth row is also rather high, since ‘e’ is an overall
high-probability letter (see Table 2.3).

2.5 Conditional probability

In many situations, we are interested in the probability of an event
given that another event has happened. For example, we might be
interested in the probabilities of the letters, given a particular di-
alect. The quantity that expresses this is the conditional probability.
The notation used for conditional probability is P(X = x | Y = y) or
in our simplified notation P(x | y), read as ‘probability of x given y’.
While the notation above defines the probability of an event given
another event, P(X | Y), where X and Y are random variables, defines
a conditional distribution. In our example on letters and dialects,
P(letter=a |dialect=north) is the probability of the letter ‘a’ given that
the dialect is the northern dialect. While P(letter | dialect) is the con-
ditional distribution of letters given the dialect.

Table 2.6 shows the conditional probabilities, P(letter | dialect).
Each cell on the table represents probability of observing a letter,
given the dialect is the one marked at the head of the column. For
example, the first row and second column indicates the probability
of picking the letter ‘a’ among the documents that belong to ‘north-
ern’ dialect (compare this with the interpretation of the same cell in
Table 2.6). The distribution presented on Table 2.6 is a distribution
over letters. It is important to note that unlike joint probability, the
conditional probability is asymmetric.

We presented the conditional probabilities in Table 2.6 without
telling how we did that. The joint probability distribution of two (or
more) random variables specify the relevant conditional distribution
(although calculating conditional distribution from the joint distri-
bution may not always be trivial). The relation between joint and
conditional distributions is

P(X | Y) =
P(X, Y)
P(Y)

(2.6)

This calculation, together with the joint probability P(X, Y), requires
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20 Sometimes we talk about ‘marginaliz-
ing out’, since, in a sense, we are taking
one of the variables out of the joint dis-
tribution by summing over all its val-
ues.

Table 2.7: Joint probability table for let-
ters and dialects with marginal proba-
bilities. P(d) is the (marginal) proba-
bility of dialects, and P(l) is the prob-
ability of letters in the corpus.

let. east north south P(l)

a 0.20 0.01 0.03 0.23
b 0.03 0.01 0.00 0.04
c 0.03 0.01 0.01 0.05
d 0.06 0.01 0.01 0.08
e 0.17 0.10 0.02 0.29
f 0.02 0.00 0.01 0.03
g 0.05 0.01 0.00 0.06
h 0.15 0.04 0.03 0.22

P(d) 0.70 0.20 0.10 1.00

Forn variables, how many possible fac-
torizations are there?

P(Y). Given the joint distribution P(X, Y), P(Y) can be calculated by
summing over all possible values of X, which is called marginaliza-
tion:20

P(Y = y) =
∑
x

P(X = x, Y = y) (2.7)

This means we are summing up all values on the joint distribution
table by rows (or columns depending on the variable). The resulting
probabilities are called marginal probabilities, since it is customarily
written at the margins of the joint distribution table as in Table 2.7.
The column margin is the same letter distribution in our original
example from Table 2.3.

If the conditional distribution P(Y | X) and the P(X) is known, the
marginal probability of a random Y can also be calculated using the
relation between the joint and conditional probabilities defined in
Equation 2.6:

P(Y = y) =
∑
x

P(Y = y |X = x)P(X = x)

From Equation 2.6, it is easy to show that the joint probability
distribution of two variables X and Y can be calculated by

P(X, Y) = P(X|Y)P(Y) or P(Y,X) = P(Y|X)P(X).

Although both formulas lead to the same result, in practice, the cal-
culations one needs to carry out are different. Preference towards
one or the other may be more practical in solutions of different prob-
lems. The above rule generalizes to more than two variables as well.
For three variables,

P(X, Y,Z) = P(X|Y,Z)P(Y|Z)P(Z) = P(X|Y,Z)P(Z|Y)P(Y)

= P(Y|X,Z)P(X|Z)P(Z) = P(Y|X,Z)P(Z|X)P(X)

= P(Z|X, Y)P(X|Y)P(Y) = P(Z|X, Y)P(Y|X)P(X).

(2.8)

The alternative ways of expanding the joint probability is called fac-
torizations of it. We are free to choose the factorization that is most
convenient for the particular application at hand.

In general, for any number of random variables, we can write

P(X1,X2, . . . ,Xn) = P(X1|X2, . . . ,Xn)P(X2, . . . ,Xn). (2.9)

Now, we can go on and expand the term P(X2, . . . ,Xn) recursively
until we reach a single variable. This is called the chain rule of prob-
abilities. As before, we have multiple ways to factorize the joint dis-
tribution since the ordering of the variables is not significant for the
joint distribution.

All the concepts discussed in this section generalizes to the con-
tinuous random variables as well. As usual, we use probability den-
sity function (instead of probability mass function) for specifying the
continuous distributions, and sums become integrals.
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21 Although this formula plays a role
in the controversy between Bayesian -
frequentist approaches to statistics (see
Section 2.12), there is nothing contro-
versial about the formula itself.

2.6 Bayes’ formula

Now we are ready to introduce one of the most important formulas
in probability and statistics.

P(X | Y) =
P(Y |X)P(X)

P(Y)

This identity can easily be derived from the relation between the joint
and conditional probabilities (Equation 2.6). As a result, in itself, it
is a simple statement of probability theory.21 However, it is very
important for machine learning and statistical inference.

A common example given for the use of Bayes’ formula is medical
diagnosis using a test of some sort. For the sake of the exercise, we
will pretend to be a doctor. In a routine checkup, one of the medical
tests was positive (indicated having a particular illness/condition)
for one of our patients. The decision we are faced is the probability
of the patient being ill, given that the test was positive. The test was
performed using a device with the following specifications:

P(t+|ill) = 0.99, that is, the test returns positive 99% of the cases if the
patient is ill.

P(t+|healthy) = 0.02, that is, the test returns a false positive in 2% of the cases.
Seeing these numbers, it is an easy mistake to think that our patient
has the condition with a 99% probability. Bayes’ formula tells us
how to calculate this properly:

P(ill|t+) =
P(t+|ill)P(ill)

P(t+)

The formula also tells us that we need additional information for this
calculation. Fortunately (as in any made-up example), we know the
unconditional probability of this particular condition, which turns
out to be 0.000 10. So, one in 10 000 people is expected to have the
condition. How do we calculate P(t+)? The solution is marginaliza-
tion. Since we know all possible values for the condition, we can
simply marginalize the illness variable out.

P(t+) = P(t+, ill)+P(t+, health) = P(t+ | ill)P(ill)+P(t+ |healthy)P(healthy)

Now we can put all in the Bayes’ formula and calculate the expected
probability of the patient being ill.

P(t+) =
0.99× 0.0001

0.99× 0.0001+ 0.02× 0.9999

If you do the math, you will find that the probability of the patient
having the condition given the test result is less than 0.5%, that is
5 in a thousand. This result comes as a surprise to most people.
Besides showing the importance of tests with low false-positive rates,
it also shows that human intuitions about probabilities are often not
as accurate as one hopes for.

The Bayes’ formula, this basic statement about probabilities, has
a very important role in machine learning and statistics. We will
return to it in later lectures with different use cases.
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2.7 Statistical independence

The concept of statistical (in)dependence plays a very important role
in machine learning and statistics. In any successful machine learn-
ing application, we are able to predict value of a random variable
because it depends on another one. For example, financial insti-
tutions can make informed decision about granting loans based on
applicants’ financial status and past actions, because whether one
will pay their loans back or not is not independent from these vari-
ables. Or, in NLP, we can guess the ‘sentiment’ in a product review
from the words within the review, because the author’s sentiment
towards the product and his/her choices of words are not indepen-
dent. If knowing one variable helps us (to some extent) guess the
other variable, then we say that they are dependent, otherwise they
are independent.

This leads to an important fact: if two random variables X and Y
are independent then

P(X|Y) = P(X) and P(Y|X) = P(Y). (2.10)

This simply says that knowing one of the variables does not change
the probability of the other variable. From equations 2.10 and 2.6, we
can easily derive that joint probability of independent random variables
X and Y are simply the product of the individual probabilities:

P(X, Y) = P(X)P(Y)

This identity is very handy especially when we have many vari-
ables, as it simplifies the calculation of the joint probability greatly
(compare with application of chain rule without independence in
Equation in 2.8).

Independence assumptions as described above may not always be
realistic. However, it happens often that two otherwise dependent
variables become independent if we know the value of a third vari-
able. This is called conditional independence. If the variables X and Y
are conditionally independent given Z,

P(X, Y|Z) = P(X|Z)P(Y|Z).

Equivalently, this also means that

P(X|Y,Z) = P(X|Z).

The conditional independence comes handy in simplifying some
problems. For example, in naive Bayes classifier the conditional inde-
pendence (assumption) greatly simplifies the model, allows estima-
tion of probabilities that are otherwise very difficult to estimate. A
popular application of the naive Bayes classifier is spam filtering. To
simplify let’s assume we only track three words, and binary random
variables W1, W2 and W3 indicate whether each of the words occur
in a given email or not. Our task, is then to estimate the probabil-
ity that a given email is spam based on occurrences of these words,
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P(spam |W1,W2,W3). This probability turns out to be difficult to
estimate since for most choices of words, it is unlikely to observe
enough number of spam and non-spam documents containing all of
these words (especially when tracking many words rather than just
three). So, we estimate P(W1,W2,W3 | spam), and calculate the prob-
ability of email being spam given the words in (or not in) it using the
Bayes’ formula.

The probability P(W1,W2,W3 | spam) is not easy to estimate ei-
ther. Many combinations of (even these three) words will never be
observed in any collections of emails. However, if we assume that the
occurrence of words are independent of each other given the email
is spam (or not), the calculations become much simpler. Although
this is not necessarily a correct assumption (occurrence of words in a
document is not independent of each other), it turns out the damage
is not big: the resulting model does well in practice while simplify-
ing the estimation considerably. Given the conditional independence
assumption, we can simply write

P(W1,W2,W2 | spam) = P(W1|spam)P(W2|spam)P(W3|spam).

The probabilities on the right hand side above can simply be es-
timated from the number of times each word occurs in spam and
non-spam documents.

2.8 Expected value of a joint probability distribution

We defined expected value of any function of a random variable in
Equation 2.3, which generalizes to the case of joint probability dis-
tributions. Expected value of a function of two random variables is,

E[f(X, Y)] =
∑
x

∑
y

P(x,y)f(x,y). (2.11)

If we want to get the expected value of each random variable from
the joint distribution, we simply set the function f(x,y) = x, which
yields

µX = E[X] =
∑
x

∑
y

P(x,y)x. (2.12)

Note that the inner sum is in fact marginalizing y out (Equation 2.7).
In general, this formulation of expected value generalizes to contin-
uous variables, and joint distributions of many random variables.
Especially when we deal with joint distribution of a large number
of variables, it is handy to use the vector notation. For example, we
can represent any joint value (x,y) from the joint distribution of X
and Y as a vector z = (x,y). Then, Equation 2.11 can equivalently
expressed as

E[f(X, Y)] =
∑
z∈XY

P(z)f(z). (2.13)

Here, the result is also a two-dimensional vector, and XY represents
set of all combinations of the values both random variables take.
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22 Hence, it is always positive.

2.9 Covariance

In Section 2.2.7, we defined variance of a single random variable as
squared expected difference from its mean. For joint distributions,
we use the same idea to calculate the variances of component dis-
tributions. For a bivariate discrete distribution, we can calculate the
variance of one of the variables with

σX =
∑
x

∑
y

P(x,y)(x− µx)2.

When we have a joint distribution (more than one variable), how-
ever, another relevant and important quantity is the covariance. Co-
variance of two random variables is defined as

cov(X, Y) = σXY = E[(X− E[X])(Y − E[Y])]. (2.14)

In words, it is the expected value of the product of the differences
from means for each variable. Although this may not be easy to un-
derstand at first sight, it is worth having a look at the formula more
carefully. If both variables are larger or smaller than their mean at
the same time, the product in Equation 2.14 will be positive. Further-
more, higher the difference from the mean, the higher the product
will be. On the other hand, if one variable is larger than its mean, and
the other variable is smaller than its mean, the result will be negative,
and similarly, the larger the absolute values, the larger the absolute
value of the product in Equation 2.14. If one of these conditions is
a general trend throughout all values the random variables take, the
covariance will be a (large) positive or negative number respectively.
If the positive and negative products occur by chance, then they will
cancel each other, and covariance will be zero (or will have a small
absolute value). In summary, if the variables co-vary we will get a
non-zero covariance.

From the definitions of variance and covariance, you can see that
both concepts are related. Variance is the covariance of a variable
with itself.22 And in many cases, it is convenient to define a variance–
covariance matrix, or simply covariance matrix. The covariance matrix
of the joint distribution of k random variables, X1 . . .Xk, looks like

Σ =


σX1 σX1X2 . . . σX1Xk
σX2X1 σX2 . . . σX2Xk

...
...

. . .
...

σXkX1 σX2Xk . . . σXk

 .

Since σXY = σYX, the covariance matrix is a symmetric matrix, and
its diagonal contains the variances of the individual random vari-
ables.
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23 There are a few other correlation co-
efficients used in statistics. However, if
the name is not specified, the term ‘cor-
relation coefficient’ refers to Pearson’s
correlation coefficient.

24 Try proving this.

2.10 Correlation

The value of covariance depends on the scale or unit of the variables.
A normalized ‘unitless’ measure, correlation, defined as

corr(X, Y) =
σXY
σXσY

(2.15)

is easier to interpret. The correlation coefficient defined above ranges
between −1 and 1. A correlation of 1 indicates a perfect increasing re-
lationship between two variables, while −1 indicates a perfect inverse
relationship. If the correlation coefficient (hence, the covariance) is
0, then the random variables do not have a linear relationship. This
quantity is known commonly known as Pearson’s correlation coefficient,
since it was developed by the statistician Karl Pearson.23

You should have already realized a relation between correlation
(or covariance) and independence. If two random variables are inde-
pendent, their covariance (and correlation) is 0. However, the reverse
is not correct. Covariance only measures linear relationships. As a
result, covariance may be zero for strongly dependent variables, if
the dependence is not linear. For example, the covariance between
any random variable and its square (cov(X,X2)) is 0,24 despite the
fact that they clearly are not independent.

Figure 2.16 demonstrates various levels of correlation and (in)de-
pendence of two random variables. In Figure 2.16a and Figure 2.16c,
the variables are highly correlated. For both pairs, the absolute val-
ues of correlation coefficient (and covariance) are large. The differ-
ence between them is the direction of the correlation, which is in-
dicated by the sign of the correlation coefficient. The variables in
Figure 2.16a are positively correlated, both increase and decrease at
the same time. On the other hand, the ones in Figure 2.16a are neg-
atively correlated, one decreases while the other increases. In both
cases, the important thing to note is that the variables are highly de-
pendent. Although we cannot predict one of the variables from the
other with certainty, knowing one of the variables gives a lot of in-
formation about the other variable. Figure 2.16b presents a milder
(positive) correlation. Here, the amount of information we get by
knowing one of the variables is not as much as in (a) and (c). This
is clearly indicated by the correlation coefficient. However, note that
the covariance between the variables in (b) is higher than the covari-
ance in (a) - due to high variance of Y. It is difficult to interpret co-
variances directly, but correlation coefficient is clearly interpretable.
The variables plotted in Figure 2.16d are not correlated. The graph
does not indicate any reasonable relation between the two variables
either. As a result both covariance and correlation scores are small.
The variables plotted in Figure 2.16e are clearly not independent.
Knowing one informs us about the other as much as in (a) and (c).
However, since the relationship is not linear, the correlation coeffi-
cient is almost 0. This exemplifies why lack of correlation is not
necessarily and indication of independence. We will introduce other,
more general, measures of (in)dependence in Chapter 3.
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Figure 2.16: Scatter plots of samples
from random variables with different
dependence relations: (a) high positive
correlation, (b) moderate positive corre-
lation (c) high negative correlation, (d)
uncorrelated variables, and (e) no cor-
relation, but strong (quadratic) depen-
dence.
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Figure 2.17: From (Messerli 2012).
The figure shows a strong correlation
between chocolate consumption in a
country and number of Nobel prizes
awarded to its citizens.

2.11 Correlation and Causation

Informally, the term correlation is used for any type of dependence
between variables, not just linear relationships. We noted earlier that
lack of correlation does not indicate independence. Another com-
mon confusion about correlation (or general idea of dependence) is
related to its relation with causation. Correlation does not indicate
causation, although if one variable causes the other we expect to see
correlation. If two variables are dependent (or correlated), they do
not have to have a direct causal link. Sometimes, the dependence
may be due a common dependence to another variable. For exam-
ple, the fact that height of someone and their salaries are positively
correlated is largely explained by the fact that in most of our present
societies, women tend earn less, and tend to be shorter than men.
Hence, at least part of the correlation we observe is not a causal re-
lation between height and the salary, but a common causal ancestor,
gender.

A more scientific example is the unmistakeable correlation shown
in Figure 2.17 between per-capita chocolate consumption and num-
ber of Nobel laureates in a country. Although the correlation is
sound, you should think twice before going into a chocolate diet
with the hope of winning a Nobel prize.

Another issue is that statistical dependence (correlation) does not
indicate the direction of the causation. For example, for a bystander
observing a fire, it may seem like ‘as more fire trucks arrive, the fire
gets worse’, but the direction of causation is probably the other way
around. So although, we won’t be doing any analysis of causation,
you’ve been warned for this common error (see also the cartoon in
Figure 2.18).

Figure 2.18: http://xkcd.com/552/

2.12 Where do the probabilities come from?

So far, we treated probabilities as numbers (between 0 and 1, inclu-
sive) and did not say much about where do they come from. The
question of what exactly a probability is a difficult one, and there
have been (rival) alternative views on it. Two well-known views, we
will encounter often is frequentist (classical) and Bayesian (probabilis-
tic) approaches. Although both approaches agree on all the aspects

http://xkcd.com/552/
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25 As we will discuss in many places,
however, MLE overfits the data used for
the estimation, the findings may not be
general enough to be useful outside the
data used for estimation. There are
some modifications to MLE, that makes
it more resistant to overfitting.

26 Or, maybe between 9.50 and 10.50,
since probabilities for single values is 0
for continuous random variables.

of the probability theory we discussed above, the interpretations of
probability in these views differ, and often lead to different meth-
ods of estimation or learning from data. This section is an informal,
rather ‘philosophical’, note on this difference. We will occasionally
return to it later in this course.

In frequentist view, the notion of probability is related to long-run
relative frequency. That is, probability of an event is the relative fre-
quency of its occurrence. For example, if we are interested in prob-
ability of a particular word, we can find its relative frequency on a
large corpus. That is, the number of times the word appears in the
corpus divided by the number of words in the corpus. Frequency-
based probabilities leads to the estimation method called maximum
likelihood estimation (MLE) we will discuss later. The MLE is preva-
lent in statistics and machine learning. The MLE results in an unbi-
ased estimate, which means the estimate is guaranteed to converge to
the actual value being estimated in the limit.25

In frequentist view of probability, not every statement can be as-
signed to a probability value. Some quantities we are often inter-
ested are fixed, hence there is no notion of repeated experiments,
and hence, no probability value. For example, we can assign a prob-
ability value to whether the next sentence in a conversation (or in a
book) will be 10 words long. Because this is a repeatable experiment.
However, we cannot assign a probability value to average number of
words in a sentence in English (to simplify, say, in all written docu-
ments so far). Even though we do not know this quantity, there is a
single number expressing it. Hence, in the frequentist view we can-
not talk about the probability of average sentence length being 10.
This seemingly ‘philosophical’ standpoint has a very big impact on
how results are evaluated in experimental studies, and hence, on the
current scientific enterprise.

Intuitively, frequency of an event and its probability is strongly
related. However, our everyday notion of probability does not nec-
essarily involve repetitive experiments. If you were given a fair coin,
you would not need a large number of experiments to conclude that
the probability of heads (or tails) is 0.5. On the practical side, some
events do not occur frequently enough to be estimated reliably. As
we will discuss late, most objects of interest in NLP, such as words,
are particularly bad at showing up in where we look for them (in
corpora).

The Bayesian notion of probability is based on (subjective) ‘degree
of belief’, matching more closely to our everyday notion of proba-
bility. In this view, probabilities are degrees of belief, and updated
‘rationally’, with the data at hand and based on the rules of probabil-
ity theory. In particular, based on the Bayes’ formula we discussed in
Section 2.6. Now that we consider probabilities as degrees of beliefs,
we can make probabilistic statements on things we are not allowed
in case of frequentist tradition. For example, we can easily talk about
the probability of average sentence length being 10,26 and we can up-
date this probability (in fact the whole probability distribution) with
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the data we observe. One particular benefit of the Bayesian estima-
tion is that we do not need anything other than probability theory
for estimation.

A common criticism for Bayesian estimation is is that one needs
to choose a (subjective) prior probability (distribution) before start-
ing the data-driven estimation. The word ‘subjective’ does not sound
like a good idea for science. As a result, Bayesian methods are often
criticized for not being ‘objective’. However, the prior information
does not necessarily involve ‘personal’ beliefs. For example, in our
example with average number of words in a sentence, there is noth-
ing wrong to start with the presupposition that the average number
of sentences cannot be a negative number. Further, it is hardly a
wrong assertion to assume that very large numbers, e.g., 1 000, are
very unlikely (especially considering we are estimating average sen-
tence length). There are many other forms of prior assumptions that
are perfectly justified, based on the knowledge accumulated in the
field–often based on data from earlier studies. Although making
truly subjective decisions is not desirable while interpreting experi-
mental results in science, if we shift our interest towards engineering
rather than science, the use of prior information (subjective or oth-
erwise) is not an issue at all. There is nothing wrong with using a
subjective method, as long as it performs well for the task at hand.

A practical note on difference between the two estimation meth-
ods is about the computational power required. Bayesian estimation
typically requires more computation power. This difference is be-
coming less important with the increasing power offered by devel-
opments in computer hardware and approximate estimation tech-
niques being developed. However, it is still an important factor in
many problems.

The debate is old and far from being settled yet. In this course,
we do not take sides in this debate. We introduce methods that
stem from both approaches for estimating probabilities. The aim of
this section is to inform the reader about these different approaches
since they have important consequences for most of the methods we
discuss.

Summary

This refresher covers a large number of concepts briefly. The infor-
mation provided above is (more than) necessary for following the
topics from probability in this lecture. However, interested students
are encouraged to consult other sources. There are many excellent
books on probability theory, it is difficult to suggest a single one here.
Below we list only a few.

MacKay (2003) covers most of the topics discussed in a way very
relevant to machine learning. The complete book is available freely
online (see the link in the reference below). Grinstead and Snell
(2012) is a more conventional introduction to probability theory. This
book is also freely available online. For an influential, but not quite
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conventional approach (from a Bayesian perspective) see Jaynes (2007).
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