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Recap Clustering Density estimation PCA Autoencoders

Supervised learning

• The methods we studied so far are instances of supervised learning
• In supervised learning, we have a set of predictors x, and want to predict a

response or outcome variable y
• During training, we have both input and output variables
• Training consist of estimating parameters w of a model
• During prediction, we are given x and make predictions based on model we

learned
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Supervised learning: regression

x

y

• The response (outcome) variable
(y) is a quantitative variable.

• Given the features (x) we want to
predict the value of y
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Supervised learning: classification
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• The response (outcome) is a label.
In the example: positive + or
negative −

• Given the features (x1 and x2), we
want to predict the label of an
unknown instance ?
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Supervised learning
how do we learn?

• The aim is to estimate a set of parameters w
• We define an objective function, and find the parameter values that minimize

the objective
• The objective typically involves reducing the training error defined based on

the true labels in the training data
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Unsupervised learning

• In unsupervised learning, we do not have labels in our training data
• Our aim is to find useful patterns/structure in the data

– for exploratory study of the data
– for augmenting / complementing supervised methods

• Close relationships with ‘data mining’, ‘data science / analytics’, ‘knowledge
discovery’

• Most unsupervised methods can be cast as graphical models with hidden
variables

• Evaluation is difficult: we do not have ‘true’ labels/values
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Today’s lecture

• Clustering: find related groups of instances
• Density estimation: find a probability distribution that explains the data
• Dimensionality reduction: find an accurate/useful lower dimensional

representation of the data
• Unsupervised learning in ANNs (RBMs, autoencoders)
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Clustering: why do we do it?

• The aim is to find groups of instances/items that are similar to each other
• Applications include

– Clustering languages, dialects for determining their relations
– Clustering (literary) texts, for e.g., authorship attribution
– Clustering words for e.g., better parsing
– Clustering documents, e.g., news into topics
– …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 7 / 48



Recap Clustering Density estimation PCA Autoencoders

Clustering in two dimensional space

x1

x2

• Unlike classification, we do not have
labels

• We want to find ‘natural’ groups in
the data

• Intuitively, similar or closer data
points are grouped together
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Similarity and distance

• The notion of distance (similarity) is important in clustering. A distance
measure D,

– is symmetric: D(a,b) = D(b,a)
– non-negative: D(a,b) ⩾ 0

for all a,b, and it D(a,b) = 0 iff a = b

– obeys triangle inequality: D(a,b) +D(b, c) ⩾ D(a, c)

• The choice of distance is application specific
• We will often face with defining distance measures between linguistic units

(letters, words, sentences, documents, …)
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Distance measures in Euclidean space

• Euclidean distance:

∥a− b∥ =

√√√√ k∑
j=1

(aj − bj)2

• Manhattan distance:

∥a− b∥1 =

k∑
j=1

|aj − bj|
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How to do clustering
Most clustering algorithms try to minimize the scatter within each cluster. Which
is equivalent to maximizing the scatter between clusters.

x1

x2

K∑
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∑
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K∑
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∑
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∑
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d(a,b)
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K-means algorithm

K-means is a popular method for clustering.
1. Randomly choose centroids, m1, . . . ,mK, representing K clusters
2. Repeat until convergence

– Assign each data point to the cluster of the nearest centroid
– Re-calculate the centroid locations based on the assignments

Effectively, we are finding a local minimum of the sum of squared Euclidean
distance within each cluster

1

2

K∑
k=1

∑
a∈Ck

∑
b∈Ck

∥a− b∥2
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K-means clustering: visualization

x1

x2

• The data
• Set cluster centroids randomly
• Assign data points to the closest

centroid
• Recalculate the centroids
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K-means: some issues

• K-means requires the data to be in an Euclidean space
• K-means is sensitive to outliers
• The results are sensitive to initialization

– There are some smarter ways to select initial points
– One can do multiple initializations, and pick the best

(with lowest within-group squares)
• It works well with approximately equal-size round-shaped clusters
• We need to specify number of clusters in advance
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How many clusters?

• The number of clusters is defined for some problems, e.g., classifying news
into a fixed set of topics/interests

• For others, there is no clear way to select the best number of clusters
• The error (within cluster scatter) decreases with increasing number of

clusters, using a test set or cross validation is not useful either
• A common approach is clustering for multiple K values, and picking where

there is an ‘elbow’ in the graph of the error function
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How many clusters?

K

J(w)
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This plot is sometimes called a scree plot.
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K-medoids

• K-medoids algorithm is an alternation of K-means
• Instead of calculating centroids, we try to find most typical data point

(medoids) at each iteration
• K-medoids can work with distances, does not need feature vectors to be in an

Euclidean space
• It is less sensitive to outliers
• It is computationally more expensive than K-means
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Hierarchical clustering

• Instead of a flat division to clusters as in K-means, hierarchical clustering
builds a hierarchy based on similarity of the data points

• There are two main ‘modes of operation’:
Bottom-up or agglomerative clustering

• starts with individual data points,
• merges the clusters until all data is in a single cluster

Top-down or divisive clustering
• starts with a single cluster,
• and splits until all leaves are single data points
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Hierarchical clustering

• Hierarchical clustering operates on distances (or similarities)
• The result is a binary tree called dendrogram
• Dendrograms are easy to interpret (especially if data is hierarchical)
• The algorithm does not commit to the number of clusters K from the start, the

dendrogram can be ‘cut’ at any height for determining the clusters
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Agglomerative clustering

1. Compute the similarity/distance
matrix

2. Assign each data point to its own
cluster

3. Repeat until no clusters left to merge

– Pick two clusters that are most
similar to each other

– Merge them into a single cluster 1 2 3 4 5
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Agglomerative clustering demonstration

1 2 3 4 5
x1

x2

1 2

3

4

5
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How to calculate between cluster distances

Complete maximal inter-cluster distance

Single minimal inter-cluster distance
Average mean inter-cluster distance
Centroid distance between the

centroids

x1

x2

1 2

3

4

5

Note: we only need distances, (feature) vectors are not necessary
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Clustering evaluation

Evaluating clustering results is often non-trivial
• Internal evaluation is based a metric that aims to indicate ‘good clustering’:

e.g., Dunn index, gap statistic, silhouette
• External metrics can be useful if we have labeled test data: e.g., V-measure,
B3ed F-score

• The results can be tested on the target application: e.g., word-clusters
evaluated based on their effect on parsing accuracy

• Human judgments, manual evaluation – ‘looks good to me’
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Clustering evaluation
internal metric example: silhouette

si =
b(i) − a(i)

max(a(i),b(i))

where
a(i) average distance between object i and and

objects in the same cluster
b(i) average distance between object i and and

objects in the closest cluster
x1

x2

1 2

3

4

5
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Clustering evaluation
external metrics: general intution

• We want clusters that contain
members of a single gold-standard
class (homogeniety)

• We want all members of a class to be
in a single cluster (completeness)

Cluster 1 Cluster 2 Cluster 3

Note the similarity with precision and recall.
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Clustering: some closing notes

• We do not have proper evaluation procedures for clustering results (for
unsupervised learning in general)

• Some clustering methods are unstable, slight changes in the data or parameter
choices may change the results drastically

• Approaches against instability include some validation methods, or
producing ‘probabilistic’ dendrograms by running clustering with different
options
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Density estimation

• K-means treats all data points in a cluster equally
• A ‘soft’ version of K-means is density estimation for Gaussian mixtures,

where
– We assume the data comes from a mixture of K Gaussian distributions
– We try to find the parameters of each distribution (instead of centroids) that

maximizes the likelihood of the data
• Unlike K-means, mixture of Gaussians assigns probabilities for each data

point belonging to one of the clusters
• It is typically estimated using the expectation-maximization (EM) algorithm
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Density estimation using the EM algorithm

• The EM algorithm (or its variations) is used in learning models with
latent/hidden variables

• It is closely related to the K-means algorithm
1. Initialize the parameters (e.g., randomly) of K multivariate normal

distributions (µ,Σ)
2. Iterate until convergence:
E-step Given the parameters, compute the membership ‘weights’, the probability of

each data point belonging to each distribution
M-step Re-estimate the mixture density parameters using the calculated membership

weights in the E-step

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 28 / 48



Recap Clustering Density estimation PCA Autoencoders

Principal component Analysis

• Principal component analysis (PCA) is a method of dimensionality reduction
• PCA maps the original data into a lower dimensional space by a linear

transformation (rotation)
• The transformed lower-dimensional variables retain most of the variation

(=information) in the input
• PCA can be used for

– visualization
– data compression
– reducing dimensionality of features for other machine learning methods
– eliminating noise
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PCA: a toy example

x1

x2

p1

p2
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3

4

4

Questions:
• How many dimensions do we have?
• How many dimensions do we need?

• Short divergence: calculate the
covariance matrix

Σ =

– What is the correlation between x1
and x2?
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PCA: A toy example (2)
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What if we reduce the data to:

z1

z2
p1 p2 p3

-5 0 5

Going back to the original coordinates is easy, rotate using:

A =

[
cos θ − sin θ
sin θ cos θ

]
=

[
3
5

−4
5

4
5

3
5

]

p1 = A×
[
−5

0

]
=

[
−3

−4

]
p2 = A×

[
0

0

]
=

[
0

0

]
p3 = A×

[
5

0

]
=

[
3

4

]
We can recover the original points perfectly. In this example the inherent
dimensionality of the data is only 1.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2020 31 / 48



Recap Clustering Density estimation PCA Autoencoders

PCA: A toy example (2)
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PCA: A toy example (2)
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PCA: A toy example (2)
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PCA: A toy example (3)

x1

x2
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-1 00

1
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2
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3

3

4
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• What if the variables were not perfectly but
strongly correlated?

• We could still do a similar transformation:

z1

z2
p1 p2 p3

-5 0 5

• Discarding z2 results in a small
reconstruction error:

p1 = A×
[
−5

0

]
=

[
−3

−4

]
• Note: z1 (also z2) is a linear combination of

original variables
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Why do we want to reduce the dimensionality

• Visualizing high-dimensional data becomes possible
• If we use the data for other ML methods,

– we reduce the computation time
– we may avoid ‘the curse of dimensionality’

• Decorrelation is useful in some applications
• We compress the data (in a lossy way)
• We eliminate noise (assuming a high signal to noise ratio)
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Different views on PCA

x1

x2 PC1
• Find the direction of the largest

variance

• Find the projection with the least
reconstruction error

• Find a lower dimensional latent
Gaussian variable such that the
observed variable is a mapping of
the latent variable to a higher
dimensional space (with added
noise)
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Aside: your regression estimates and PCA
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How to find PCs

• When viewed as maximizing variance or reducing the reconstruction error, we can
write the appropriate objective function and find the vectors that minimize it

• In latent variable interpretation, we can use EM as in estimating mixtures of
Gaussians

• The principal components are the eigenvectors of the correlation matrix,
where large eigenvalues correspond to components with large variation

• A numerically stable way to obtain principal components is doing singular
value decomposition (SVD) on the input data
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PCA as matrix factorization (eigenvalue decomposition)
• One can compute PCA by decomposing the covariance matrix as (note
Σ = XTX)

Σ = UΛUT

– the columns of U are the principal components (eigenvectors)
– Λ is a diagonal matrix of eigenvalues

• Another option is SVD, which factorizes the input vector
(k variables× n data points) as

X = UDV∗

– U (k× k) contains the eigenvectors as before,
– D (k× n) diagonal matrix D2 = Λ

– V∗ is a n× n unitary matrix
* The above is correct for centered variables, otherwise the formulas get slightly more complicated.
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Some practical notes on PCA

• Variables need to be centered
• Scales of the variables matter, standardizing may be a good idea depending

on the units/scales of the individual variables
• The sign/direction of the principal component (vector) is not important
• If there are more variables than the data points, we can still calculate the

principal components, but there will be at most n− 1 PCs
• PCA will be successful if variables are correlated, there are extensions for

dealing with nonlinearities (e.g., kernel PCA, ICA, t-SNE)
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Unsupervised learning in ANNs

• Restricted Boltzmann machines (RBM)
similar to the latent variable models (e.g., Gaussian mixtures), consider the
representation learned by hidden layers as hidden variables (h), and learn
p(x,h) that maximize the probability of the (unlabeled)data

• Autoencoders
train a constrained feed-forward network to predict its output
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Restricted Boltzmann machines (RBMs)

x1

h1

x2

h2

x3

h3

x4

h4

W

h x

• RBMs are unsupervised latent variable
models, they learn only from unlabeled data

• They are generative models of the joint
probability p(h, x)

• They correspond to undirected graphical
models

• No links within layers
• The aim is to learn useful features (h)

*Biases are omitted in the diagrams and the formulas for simplicity.
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The distribution defined by RBMs

x1 h1

x2 h2

x3 h3

x4 h4

W
p(h, x) =

eh
TWx

Z

This calculation is intractable (Z is difficult to calculate).
But conditional distributions are easy to calculate

p(h|x) =
∏
j

p(hj|x) =
1

1+ eWjx

p(x|h) =
∏
k

p(xk|h) =
1

1+ eW
T
kh
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Learning in RBMs

• We want to maximize the probability the model assigns to the input, p(x), or
equivalently minimize − log p(x)

• In general, this is computationally expensive
• Contrastive divergence algorithm is a well known algorithm that efficiently finds

an approximate solution
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Autoencoders

x1

x̂1

x2
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x̂4

h3

x5

x̂5

• Autoencoders are standard feed-forward
networks

• The main difference is that they are
trained to predict their input (they try to
learn the identity function)

• The aim is to learn useful
representations of input at the hidden
layer

• The weights are often shared/tied
(W∗ = WT )
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Under-complete autoencoders

x1 x̂1

x2 x̂2h1

x3 x̂3h2

x4 x̂4h3

x5 x̂5

• An autoencoder is said to be
under-complete if there are fewer hidden
units than inputs

• The network is forced to learn a compact
representation of the input (compress)

• An autoencoder with a single hidden
layer approximates the PCA

• We need multiple layers for learning
non-linear features
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Over-complete autoencoders

h1

h2x1 x̂1

h3x2 x̂2

h4x3 x̂3

h5

• An autoencoder is said to be
over-complete if there are more hidden
units than inputs

• The network can normally memorize the
input perfectly

• This type of networks are useful if
trained with a regularization term
resulting in sparse hidden units (e.g., L1
regularization)
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Denoising autoencoders
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0 0

x

x̃

h

x̂

• Instead of providing the exact input, we
introduce noise by

– randomly setting some inputs to 0

(dropout)
– adding random (Gaussian) noise

• Network is still expected to reconstruct
the original input (without noise)
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Unsupervised pre-training

• A common use case for RBMs and autoencoders are as pre-training methods
for supervised networks

• Autoencoders or RBMs are trained using unlabeled data
• The weights learned during the unsupervised learning is used for initializing

the weights of a supervised network
• This approach has been one of the reasons for success of deep networks
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Summary

• In unsupervised learning, we do not have labels. Our aim is to find/exploit
(latent) structure in the data

• Unsupervised methods try to discover ‘hidden’ structure in the data
Clustering finds groups in the data

Density estimation estimates parameters of latent probability distributions
Dimensionality reduction transforms the data in a low dimensional space

while keeping most of the information in the original data

After the break:
• More ML: sequence learning
• Common CL tasks: tokenization, morphology, syntactic parsing, (lexical)

semantics,
• Some NLP applications: text classification, and maybe more
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Derivation of PCA by maximizing the variance

• We focus on the first PC (z1), which maximizes the variance of the data onto
itself

• We are interested only on the direction, so we choose z1 to be a unit vector
(∥z1∥ = 1)

• Remember that to project a vector onto another, we simply use dot product,
So the projected data points are zxi for i = 1, . . . ,N.

• The variance of the projected data points (that we want to maximize) is,

σz1
=

1

N

N∑
i

(z1xi − z1x̄i)
2 = zT1Σz

where Σx is the covariance matrix of the unprojected data
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Derivation of PCA by maximizing the variance (cont.)
• The problem becomes maximize

zT1Σz

with the constraint ∥z1∥ = zT1z1 = 1

• Turning it into a unconstrained optimization problem with Lagrange
multipliers, we minimize

zT1Σz+ λ1(1− zT1z1)

• Taking the derivative and setting it to 0 gives us

Σz1 = λ1z1

Note: by definition, z1 is an eigenvector of Σ, and λ1 is the corresponding
eigenvalue

• z1 is the first principal component, we can now compute the second principal
component with the constraint that it has to be orthogonal to the first one
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