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Deep neural networks

Deep learning refers to a set of machine learning methods that have
recently been (re)popularized. One of the important aspects of the
deep learning is the use of deeper neural networks with more than
one hidden layers. They have been successfully applied to many
machine learning tasks, and they are also the dominant approach
used in the natural language processing. Deep ANNs are not just
fully-connected feed-forward networks with multiple hidden layers
as the one presented in Figure 10.1. Besides the use of multiple
layers, the deep learning architectures used in practice diverge from
the typical feed-forward networks by use of sparse connectivity and
weight sharing.

Earlier, we noted that an ANN with a single hidden layer is a uni-
versal function approximator. That is, it can approximate any com-
putable function with arbitrary precision. Then, a natural question
to ask is ‘why should one use more than one layer?” The first reason
is related to the formal proof that ANNs with a single hidden layer
are universal function approximators. The proof is very general, and
there is no way to tell how many units are needed in the hidden layer.
The second reason has to do with the fact that certain problems seem
to suit well to ANN architectures with multiple layers. These involve
problems where layers, or hierarchies of features are useful. A com-
mon example is object recognition in images. Recognizing objects
(such as cars, animals or faces) in images involve recognizing simple
shapes that occur in these objects, which are combination of even
simpler lines or curves (e.g., edges in the image) which in turn are
certain combinations of pixels. These features build on each other,
and consecutive layers in a network learn such hierarchy of features.
However, the depth does not have to be only for a hierarchy of fea-
tures. As we will see soon, representing a temporal sequence also
results in effectively increasing the depth of the network.

Although there has been many interesting recent developments,
many of the ideas that drive current deep learning methods were
developed in 1980’s and 1990’s. The most important reason for the
present success and the renewed interest is probably the develop-
ments in computing hardware. Particularly, availability of vector
processors, such as graphical processing units (GPUs) in personal
computers, that perform linear algebra operations efficiently made
training large neural networks feasible. The increased availability of
labeled and unlabeled data is another reason. At present, the deep
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Figure 10.1: A deep feed-forward
(fully-connected) network.
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networks are the default or dominant method in many fields, in-
cluding the NLP. In this lecture, we will introduce two architectures
that are commonly used in NLP, namely recurrent neural networks
(RNNs) and convolutional neural networks (CNNSs), and discuss some
of the common practices and issues that arise while training deep
networks.

10.1 Recurrent neural networks

Recurrent neural networks (RNNs) are sequence learning models.
Unlike feed-forward networks which have only a forward flow of
information during prediction, RNNs include (time-delayed) loops.
Figure 10.2 presents a typical RNN. Without the thick recurrent link
presented, the RNN is simply a feed forward network. What makes
RNNSs special is the backwards loop over the hidden units. This
makes an RNN to use the information in the previous hidden states
as well as the current input. Hence, although the RNNs process a
single input item (e.g., word) at a time, the output of the hidden
layer is a function of the output of the hidden layer in the previous
time step as well as the current input. As a result they can make use
of the information from the past observations (e.g., earlier words).

Another way to look at a recurrent network, often used for intro-
ducing simple recurrent networks (SRNs) is to assume that we have a
set of ‘context’ units which are the copies of the hidden units from
the previous time step. This is shown in Figure 10.3, where the spe-
cial link labeled ‘copy” does not have any learned weights, but the
other links, including the one from the context unit to the hidden
units, have weights that are learned. As a result, the hidden units
can combine the information from the past hidden representation
and the current input. This representation should make the forward
operation of an RNN clearer.

In an SRN, like the one presented in Figure 10.3, it is also possi-
ble to apply the standard backpropagation (BP) algorithm, since the
weights that are learned are feed-forward. However, applying the
backpropagation in this architecture means that error is not back-
propagated more than one time step.

In modern recurrent networks, a modified version of the BP algo-
rithm, often called backpropagation through time (BPTT), is used. To
understand the BPTT, it is useful to unfold, or unroll, the network. An
unrolled recurrent network is presented in Figure 10.4.

The representation in in Figure 10.4 describes the same type of net-
work depicted in Figure 10.2. In the unrolled network in Figure 10.4,
each time step is shown separately. This representation also shows
the network is effectively a deep feed-forward network. And appli-
cation of the back propagation algorithm is also straightforward. The
error made at any time step is reflected to the input and hidden layer
weights before this time step. It is also important to realize that most
parameters are shared. The weights that are shared are shown with
the arrows with same color in Figure 10.4.
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Figure 10.2: A schematic representation
of a recurrent network. The thick recur-
rent link on the hidden layer indicates
connections from each hidden unit to
every hidden unit (including itself).
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Figure 10.3: Another schematic repre-
sentation of a recurrent network, which
used describing simple recurrent net-
works (SRNs, also known as Elman net-
works). The link with label ‘copy” does
not have any associated weights.
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Although BPTT gives us a way to apply BP to recurrent networks,
the (time) depth in RNNs leads to a problem called unstable gradi-
ents. To appreciate the problem, remember that updates applied to
weights in each layer is calculated using the chain rule of derivatives.
As a result, the update applied to the weights in earlier stages of a
deep network will be composed of a long chain of (matrix) multipli-
cations. Multiplying a series of numbers with absolute values less
than 1 will result in a number close to 0, slowing down learning,
maybe to the extent that nothing is learned. Similarly, multiplying
a series numbers with absolute values greater than 1 will cause the
error signal to be too large, causing instabilities due to large weight
updates. The former case is called vanishing gradients, and the latter
is called exploding gradients in the literature.

To solve the exploding gradients, often a simple technique called
gradient clipping is used. Gradient clipping simply means truncat-
ing the gradients larger than a particular value. The solution of the
vanishing gradients is more involved.

10.1.1 Gated recurrent networks

Gated RNNs are a solution to the vanishing gradient problem. The
general idea with gated RNNs is to use possibly multiple gating
mechanisms that determine which dimensions of the hidden repre-
sentation kept for a long time or forgotten quickly. The architectures
used are rather complex. We will not go into the details of the gated
recurrent networks in this class. However, we briefly mention two
variants that are popular in the field.

The long-short-term memory (LSTM) cell, which is presented in Fig-
ure 10.5, controls the information kept, added or removed in the
hidden representation through a number of ‘gates’. The LSTM keeps
two vectors of hidden representations, the one called the ‘hidden
state” (‘"h’ in the figure) and the other one is called the ‘cell state’ (‘c’
in the figure). Both the cell state and the hidden layer are passed
to the next time step after a number of operations. The unshaded
square blocks in the figure are called gates. They are simply ANN
layers with sigmoid activation function. The circles (and the ellipse)
in the figure represent element-wise vector operations. The forget
gate (o) controls what is removed (or kept) from the cell state and
they control what is removed, and added to cell state based on the
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Figure 10.4: An unrolled RNN. The su-
perscripts indicate the time steps. Note
that the weights represented with the
links with the same color are shared.
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Figure 10.5: A schematic representation
an LSTM cell. The drawing similar to
the ones from a blog post by Chris Olah.


https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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previous hidden state and the current input. The input gate (o})
controls what is added to the cell state. And the output gate (o,)
controls the hidden unit output.

The LSTM and its variants have been used successfully in many
sequence learning tasks. A somewhat simpler variant, called simply
gated recurrent unit (GRU), has also become quite popular, and likely
to be found in many standard neural network tools and libraries.
The gated RNNs are complex models, the success of one variant or
the other differs in different applications. However, in for most uses,
gated RNNs yield better results than simple RNNs.

10.1.2 Different uses of RNNs

RNNSs have been used in a number of different linguistic problems.
The architecture is flexible, and can be extended in many ways. Here,
we briefly go through some of the common variations.

A very common practice is to use bidirectional RNNs. A bidirec-
tional RNN is composed of two RNNs, one run forward as we dis-
cussed above, and another one run backwards through the sequence.
The hidden representations from both RNNs are then combined and
fed to the later layers in the network architecture. Unless the appli-
cation requires online sequential processing, bidirectional networks
are possible, and often perform better than unidirectional variants.
A bidirectional RNN is shown in Figure 10.6.

RNNSs can be used for a typical sequence model such as hidden
Markov models, In this case, the we use output of the RNN at each
time step to predict a label as shown in Figure 10.4. Such a net-
work learns a one-to-one mapping between equal-length inputs and
the outputs. The output layer is typically a classification (e.g., us-
ing softmax activation). This type of RNNs have many applications
in NLP typical examples including POS tagging, and named entity
recognition (NER).

Another use of RNNs is depicted in Figure 10.7. In this case the
intermediate representations build by the RNN is not used for any
prediction. The network builds a representation h(t) for the whole
sequence, and this representation is used for assigning a label to the
sequence. This RNN configuration is used frequently for sequence
classification tasks, e.g., text classification tasks like spam detection.”

y(t)
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One final standard variant that is interesting for NLP applications
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Figure 10.6: A bidirectional RNN.

1 A variation of this architecture, where
all the intermediate representations are
combined somehow for a single final

prediction is also common.
Figure 10.7: An RNN for sequence clas-

sification. Only the final representation
built by the RNN is used for prediction.



called a sequence-to-sequence (or seqzseq) network. In fact, this is an
encoder—decoder architecture, where both encoder and the decoder
are recurrent networks. In this setup, shown in Figure 10.8, the en-
coder RNN builds a representation for the complete input sequence,
which typically is terminated by a special end-of-sequence symbol.
The decoder’s hidden layer is initialized using this representation,
and it is expected to produce the output sequence, followed by the
end-of-sequence symbol. A very common variation in many appli-
cations is to provide the previous output as input to the encoder
(shown with the gray curved arrows in the figure). Note that we can
train the network using the gold-standard output sequence. How-
ever, at prediction time, the model has to rely on its own output.

x(1) (eos)

Sequence-to-sequence networks similar to the one in Figure 10.8
are capable of transforming a sequence to another sequence with a
different length. They are used in many applications, probably most
popular application being machine translation. The modern seq2seq
models are generally more complex than the one described above. A
very popular extension to such models, called an attention mechanism
to provide the intermediate representations built by the encoder to
the decoder time steps, often passing through another network com-
ponent that learns what parts of the input is more important for the
present prediction task.?

It is also common to use deeper, stacked, RNN layers for both
encoder and the decoder, and bidirectional RNNs for the encoder
part of the network.

10.2 Convolutional networks

Convolutional neural networks (CNNSs) are another type of popular
ANN architecture. They have become particularly popular in image
processing tasks, but they also made their way into language pro-
cessing.

Convolution is an operation, a filter, applied to a signal, which
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Figure 10.8: A sequence-to-sequence
model.

2 The attention idea was even developed
further, leading to architectures using
only attention without recurrent links.
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transforms it based on the neighboring values at any point. It has its
roots in in signal processing, where it is typically applied to a contin-
uous signal. However, for our purposes it is a filter that transforms
each discrete unit based on its neighbors.

In image processing a filter is typically a square matrix, that slides
over the complete image to transform every pixel, as demonstrated in
Figure 10.9. Note that the convolution is not well-defined on the pix-
els at the edges of the image. In practice, one “pads’ the images (with
values appropriate for the filter applied) to obtain a transformed im-
age with the same size as the original image. Otherwise, the result
would be a smaller image (as in Figure 10.9).

In standard image processing software many of the operations
on images are done through convolution operations. Figure 10.10
shows two common filters used by image processing software. The
first one, blurring, replaces a pixel with a weighted average of its
neighborhood, making all pixels similar to their neighbors and re-
moving the details from the image. The second filter shown, edge
detection, is probably more useful for machine learning. The filter
replaces pixels with intensities similar to its neighbors with numbers
close to 0, while the pixels that are different from their neighbors are
assigned to larger intensity values.

The fixed filters demonstrated above are useful (and used) in im-
age processing software. However, in machine learning applications
we want to learn these filters from data. In a typical CNN applica-
tion, we learn many such filters, trained on the task we are inter-
ested in.3 The hope is that each filter extracts some useful features.
For example, edges with different slants from given pixels. It is also
very common to stack the convolutional layers. In a nutshell, the
idea with multiple layers of convolution is to learn a hierarchy of
filters. Continuing with the examples with edges with different ori-
entations, another layer build on edges may learn useful (geometric)
shapes, and yet another layer may recognize object parts composed
of these shapes, and so on. Figure 10.11 first two stages of this hypo-
thetical scenario. If our aim is, for example, predicting whether an
image contains people, convolutions over the shapes shown in the
lower part of Figure 10.11 are likely to be useful.

We discussed convolutions in the context of 2D objects (images),
since they are most commonly used in this area. However, they can
easily be extended to 3D objects (e.g., for processing videos), or ap-
plicable to 1D sequences (for speech and language processing).

We now look at the convolutions more closely, but assuming that
we work on a single-dimensional sequence. The units in the se-
quence, for our purposes, can be (representations of) words, charac-
ters, phonemes, or other linguistic objects. Figure 10.12 shows con-
volutions applied to such a sequence. If we were running this convo-
lutional network on words, the convolution would learn something
(useful) about word trigrams. For example, the final aim is sentiment
classification, this convolution would result in higher values at the
hidden representation if for trigrams that are associated with nega-
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Figure 10.9: A demonstration of convo-
lution in image processing. Every pixel
in the image is passed through a fil-
ter, where the transformed value of the
pixel is a weighted combination of its
original value and its neighbors.
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Figure 10.10: Two example filters (con-
volutions) used in image processing:
blurring (top) and edge detection (bot-
tom).
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3 The values in the filter matrices above
are the parameters that we want to
learn.

Figure 10.11: Results of possible appli-
cations of layers of convolutions. First
layer of convolution may learn differ-
ent filters for edges with different orien-
tations (top), while another layer built
on it may learn geometric shapes built
with them (bottom). Yet another layer
may be used to detect objects, like
houses, windows, people, based on
these shapes (not shown in the figure).
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Figure 10.12: Demonstration of 1D con-
volution. The weights indicated with
the same colors are the same regardless
of their position in the sequence.



tive or positive sentiments. There are two aspects of the CNNs that
set them apart from typical neural networks such as MLP. First, the
weights are shared, the same filter is run through the entire sequence
without modifying the weights during prediction. And second, the
input layer and the hidden layers are not fully connected. As well
as being suitable for picking certain features, these aspects reduce
the number of parameters learned, and complexity of the network.
In practice, many such filters (possibly with different input window
size) used in combination with multiple layers of convolutions, and
finally with a fully connected prediction layer, e.g., a sigmoid or soft-
max classifier.

Returning to the example of sentiment classification, a CNN layer
like the one in Figure 10.12 will discover a trigram with high-sentiment
content wherever it occurs in the sequence. However downstream
classification layer need to still consider hidden layer activations as
separate features. In many problems, we do not want this location
sensitivity. For example, a phrase like not worth seeing in a movie re-
view is an indication of a negative sentiment wherever it appears. To
make the features learned by convolutions location invariant, a con-
cept called pooling is applied. Pooling simply calculates a statistics,
most commonly ‘maximum’ over a range of its inputs. When it is
applied to convolutions as in Figure 10.13, the new features are rel-
atively location invariant. Another aspect of the pooling to note is
that, it is a fixed operation, there are no weights to learned in the
pooling layer.

If we apply the ‘max pooling’, the value of hj in the figure is the
maximum of hy, hy and h3, which means if the convolution detects
any interesting trigrams from x; to x4, it h] will indicate it. Hence, to
some extent, a classifier that uses the output of the network shown in
Figure 10.13 will be insensitive to the location of the feature detected
by the convolution. However, Figure 10.13 still retains some location
sensitivity, which may be useful for some applications. For example,
for a face recognition network, it is likely important to detect eyes
above a nose. In problems where location is not useful at all (which
is the case in many text classification examples) one can pool over the
complete convolution output, passing a single feature to the classifier
from this filter. Remember that we typically use many convolutions,
hence, in this case, the classifier will be given a single feature from
each convolution.

For both convolutions and pooling, the examples we looked at so
far cover the whole sequence by shifting the filter one unit at a time.
It is common to define a larger stride, that shifts the convolution or
pooling over more than one unit at a time. Figure 10.14 repeats the
network shown in Figure 10.13 with a stride of 3 on the pooling layer.
With this configuration, each output of the pooling layer covers ex-
actly half of the convolutions. However, note that due to hierarchical
nature of the network, they are affected by larger spans of input.

Most CNNs used in practice are deep, resulting in diminishing
numbers of features when successive convolution or pooling layers

DEEP NEURAL NETWORKS 143

’

hy  h;  hy

0N
XA

Figure 10.13: Demonstration of pooling.
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Figure 10.14: The same network pre-
sented in Figure 10.13, but the pooling
layer has a stride of 3.
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are stacked without padding as shown in Figure 10.15. This is some-
times called valid padding, meaning that each convolution is calcu-
lated on real data. However, it is a common practice to pad the input,
typically with Os, so that the output of the network stays stable. Fig-
ure 10.16 shows an example of padding applied to the same network.
Here, each layer is padded from both sides with a single ‘imaginary’
input. For an image, this would mean padding the matrix from all
sides. With a stride of 1, padding only one unit from all sides as in
Figure 10.16 results in an output the same dimensions as the input.
Hence, it is often called same padding. With a larger stride, how-
ever, this would result in a reduction in the output dimension more
than expected from the stride. In such cases it is an option to pad as
many values as necessary to make sure that the output is of expected
dimension, which is sometimes called full padding.

In NLP, most common use of CNNSs is text classification. Given an
input text, we typically define multiple convolutions, or filters. Each
convolution, after training, will detect an ‘n-gram’ feature with the
width of the convolution. Although in theory a larger convolution
width should learn features within its window that are based on a
(discontinuous) sub-sequence, examples of convolutions with differ-
ent sizes are sometime used. Figure 10.17 demonstrates a possibly
way to use CNNSs for text classification. The first layer in the network
is typically an embedding layer, a dense (as opposed to sparse one-hot)
representation of the words (we will cover embeddings later in this
class). The example uses three convolutions, first two with width 2,
and the last one with width 3. The first convolution in the example,
finds something interesting in input bigram not really, while the sec-
ond one is more sensitive to bigram really worth. The network does
a max pooling over the whole sequence, and then uses the result-
ing representations as an input to a classifier with a single hidden
layer. The final layer, a single (likely sigmoid) unit is used for binary
classification.
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Figure 10.15: A deep CNN network
without padding.

Figure 10.16: The same network in Fig-
ure 10.15 with padding.

Figure 10.17: A demonstration of CNNs
used for text classification.



In real-life examples, especially in image processing systems, CNNs
are typically deeper and also more structured. This may make their
training difficult despite the sparse connectivity and shared weights.
For very large systems, it is also a common practice to pre-train com-
ponents of the network piece-by-piece. In the NLP applications like
the one demonstrated in Figure 10.17, the embeddings are typically
trained separately, and most of the time training continues on the
task as well.

Summary

In this lecture we covered some of the methods and practical issues
in deep learning architectures. The two architectures we introduce,
recurrent neural networks and convolutional neural networks are
rather ‘traditional” methods in the field. As of this writing, methods
and applications of deep learning are active areas of research. And,
the perceived ‘best architecture’ for a particular task often shifts in a
short time. A notable recent development we did not cover is the so-
called transformer architecture used as a non-recurrent alternative to
RNNss (Vaswani et al. 2017).

In any case, the concepts introduced in this lecture is important
to understand newer, more complex methods. Similar to many other
subjects in machine learning, it probably better to supplement this
lecture from our usual machine learning textbook references. How-
ever, due to popularity of deep learning, the online information on
these methods are abundant, and it may also be a good idea to follow
some of the online practical tutorials.
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