Information theory

Information theory

Statistical Natural Language Processing
A refresher on information theory

o Information theory is concerned with measurement,
. storage and transmission of information
511 Colteki
Caga Gl o It has its roots in communication theory, but is applied to
many different fields NLP

o We will revisit some of the major concepts
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Noisy channel model Coding example
binary coding of an eight-letter alphabet
noisy -
dermmel letter code
: : oo
10000010 10010010 2 00000001
o We can encode an 8-letter alphabet with E ggggg%g
. " ] c
o We want codes that are efficient: we do not want to waste Slbitsusingonehotrepresentation d 00001000
the channel bandwidth » Can we do better than one-hot coding? - 00010000
o We want codes that are resilient to errors: we want to be f 00100000
able to detect and correct errors g 01000000
o This simple model has many applications in NLP, h 10000000
including in speech recognition and machine translations
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Coding example Self information / surprisal
binary coding of an eight-letter alphabet
Self information (or surprisal) associated with an event x is
1
letter code I(x) = log ] = —log P(x)
a 00000000
)000 . . . ) )
o We can encode an 8-letter alphabet with b LLQLOOO] o If the event is certain, the information (or surprise)
: : ] c 00000010 ; R
8 bits using one-hot representation d 00000011 associated with it is 0
0
o Can we do better than one-hot coding? e 00000100 o Low probability (surprising) events have higher
» Can we do even better? f 00000101 information content
g 00000110 « Base of the log determines the unit of information
h 00000111 o5 LI
e nats
10 dit, ban, hartley
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Why log? Entropy
Entropy is a measure of the uncertainty of a random variable:
o Reminder: logarithms transform exponential relations to
linear relations H(X) =— Z P(x)log P(x)
o In most systems, linear increase in capacity increases *
possible outcomes exponentially o Entropy is the lower bound on the best average code
— Number of possible word combinations in a two-word length, given the distribution P that generates the data
sentenc‘e is exponentially more than the number of possible « Entropy is average surprisal: H(X) = E[—log P(x)]
words in a one-word sentence . ) o
— But we expect information to double, not increase o It generalizes to continuous distributions as well (replace
exponentially sum with integral)
o Working with logarithms is mathematically and
computationally more suitable Entropy is about a distribution, while surprisal is about
individual events
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Example: entropy of a Bernoulli distribution

H(X) in bits
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Entropy: demonstration
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increasing number of outcomes increases entropy

Hzf%logz%f%logz%:1
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Entropy: demonstration
the distribution matters
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Back to coding letters

« Can we do better?

o No. H = 3 bits, we need 3
bits on average

Uniform distribution has the
maximum uncertainty, hence the
maximum entropy.
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letter prob code
a 1 000
b 1 001
c 1 010
d 1 o1
e 31 100
f 3 101
g 3 110
h 3 111
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

H=—-log1=0
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Entropy: demonstration

increasing number of outcomes increases entropy
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Entropy: demonstration
the distribution matters
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Back to coding letters
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o Can we do better?

letter prob code
e No. H = 3 bits, we need 3
bits on average a % 0
o If the probabilities were b % 10
different, could we do c 1 110
better? ?
e Yes. Now H = 2 bits, we d 16 1110
need 2 bits on average e & 111100
1
Uniform distribution has the 64 et
maximum uncertainty, hence the g a1 111110
maximum entropy. 64
h 61—4 11111

C. Goltekin,  SfS / University of Tiibingen

Summer Semester 2020

8/19

8/19

9/19

10/19



Information theory

Differential entropy

o Information entropy generalizes to the continuous
distributions

n(X) = — pr(x] log p(x)

o The entropy of continuous variables is called differential
entropy

o Differential entropy is typically measures in nats
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Mutual information

Mutual information measures mutual dependence between two
random variables

MIX,Y) = Y P(x,y)log, %
x vy

o Ml is the average (expected value of) PMI

o PMI is defined on events, MI is defined on distributions
o Note the similarity with the covariance (or correlation)
o Unlike correlation, mutual information is

- also defined for discrete variables
- also sensitive the non-linear dependence
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Entropy, mutual information and conditional entropy

H(X) H(Y [ X)
MI(X,Y)
H(X|Y) A
H(X, Y)
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KL-divergence / relative entropy

For two distribution P and Q with same support,
Kullback-Leibler divergence of Q from P (or relative entropy of
P given Q) is defined as

P(x)
Qx)

Dxr(PIQ) = ) P(x)log,

o Dy measures the amount of extra bits needed when Q is
used instead of P

Dk (PQ) = H(P,Q) — H(P)
o Used for measuring difference between two distributions

« Note: it is not symmetric (not a distance measure)
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Pointwise mutual information

Pointwise mutual information (PMI) between two events is
defined as
Px,y)

PMI(x,y) = log; PLOP(Y)

o Reminder: P(x,y) = P(x)P(y) if two events are
independent PMI
0 if the events are independent
+ if events cooccur more than they would occur by chance
— if events cooccur less than they would occur by chance

o Pointwise mutual information is symmetric
PMI(X,Y) = PMI(Y, X)

« PMI is often used as a measure of association (e.g.,
between words) in computational/corpus linguistics
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Conditional entropy

Conditional entropy is the entropy of a random variable
conditioned on another random variable.

HIX[Y) = ) PyHX|Y=y)
yey
= — ) Plxy)logP(x|y)
xeX,yey

o H(X|Y) = H(X) if random variables are independent

o Conditional entropy is lower if random variables are
dependent
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Cross entropy

Cross entropy measures entropy of a distribution P, under
another distribution Q.

H(P,Q) = - P(x)logQ(x)

o It often arises in the context of approximation:
- if we approximate the true distribution P with Q

o It is always larger than H(P): it is the (non-optimum)
average code-length of P coded using Q

o Itis a common error function in ML for categorical
distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Short divergence: distance measure

A distance function, or a metric, satisfies:
e d(x,y) >0
e d(x,y) =d(y,x)
e d(x,y)=0 &< x=y
o d(x,y) < d(x,z) + d(z,y)

We will encounter measures/metrics frequently in this course.
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Summary

o Information theory has many applications in NLP and ML

o We reviewed a number of important concepts from the

information theory

— Self information
— Pointwise MI
- Cross entropy
Next:
Mon ML intro / regression
Wed Classification
Fri Classification
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- Entropy
— Mutual information
- KL-divergence

Summer Semester 2020

19/19

Further reading

o The original article from Shannon (1948), which started
the field, is also quite easy to read.

o MacKay (2003) covers most of the topics discussed, in a
way quite relevant to machine learning. The complete
book is available freely online (see the link below)

@ MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. isex
978-05-2164-298-9. uri: http://www.inference.phy.cam.ac.uk/itpran/book.html

@ Shannon, Claude E. (1948). “A theory of ication”. In: Bell Systen

pp. 379-423, 623-656.

al Journal 27,
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