Statistical Natural Language Processing ML intro & regression

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2020

Machine learning is ...

The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience. -Mitchell (1997)

Machine Learning is the study of data-driven methods capable of mimicking, understanding and aiding human and biological information processing tasks.

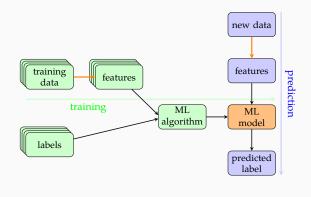
—Barber (2012)

Statistical learning refers to a vast set of tools for understanding data. -James et al. (2013)

Ç. Çöltekin, SfS / University of Tübing

ner Semester 2020

Supervised learning



Supervised learning

two common settings

A supervised ML method is called

regression if the outcome to be predicted is a numeric (continuous) variable

classification if the outcome to be predicted is a categorical variable

Why machine learning?

- · Majority of the modern computational linguistic tasks and applications are based on machine learning
 - Tokenization
 - Part of speech tagging
 - Parsing

 - Speech recognition
 - Named Entity recognition Document classification
 - Question answering
 - Machine translation

Supervised or unsupervised

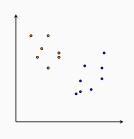
- Machine learning methods are often divided into two broad categories: supervised and unsupervised
- Supervised methods rely on labeled (or annotated) data
- Unsupervised methods try to find regularities in the data without any (direct) supervision
- Some methods do not fit any (or fit both):
 - Semi-supervised methods use a mixture of both
 - Reinforcement learning refers to the methods where supervision is indirect and/or delayed

In this course, we will mostly discuss/use supervised methods.

Ç. Çöltekin, SfS / University of Tübing

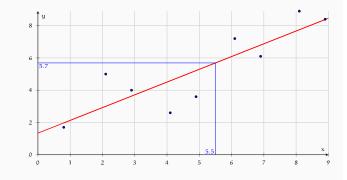
Unsupervised learning

- In unsupervised learning we do not have any labels
- The aim is discovering some 'latent' structure in the data
- Common examples include
 - Clustering
 - Density estimation
 - Dimensionality reduction
- The methods that do not require (manual) annotation are sometimes called unsupervised



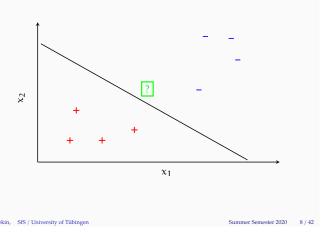
Ç. Çöltekin, SfS / University of Tübing

Regression



C. Cöltekin. SfS / University of Tübinge C. Cöltekin. SfS / University of Tübins

Classification



Machine learning and statistics

- The methods largely overlap (it was even suggested that both should be collectively called 'data science')
- · Aims differ
 - In statistics (used as in experimental sciences) aim is making inferences using the models
 - In machine learning correct predictions are at the focus
- · A more diverse set of models/methods are used in ML

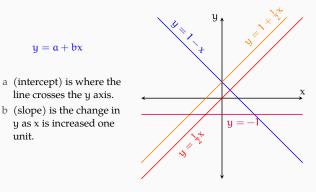
Ç. Çöltekin, SfS / University of Tübinge

unit.

Ç. Çöltekin, SfS / University of Tübinger

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & reg-

The linear equation: the regression model



Notation differences for the regression equation

$y_i = wx_i$

- \bullet Sometimes, Greek letters α and β are used for intercept and the slope, respectively
- Another common notation to use only b, β , θ or w, but use subscripts, 0 indicating the intercept and 1 indicating the
- In machine learning it is common to use w for all coefficients (sometimes you may see b used instead of w_0)
- · Sometimes coefficients wear hats, to emphasize that they are estimates
- Often, we use the vector notation for both input(s) and coefficients: $\mathbf{w} = (w_0, w_1)$ and $\mathbf{x_i} = (1, \mathbf{x_i})$

ML topics we will cover in this course

- (Linear) Regression (today)
- Classification (perceptron, logistic regression, ANNs)
- \bullet Evaluating ML methods / algorithms
- Unsupervised learning
- · Sequence learning

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & reg-

Machine learning and models

- A machine learning method makes its predictions based
- The models are often parametrized: a set of parameters defines a model
- · Learning can be viewed as finding the 'best' model among a family of models (that differ based on their parameters)

Ç. Çöltekin, SfS / University of Tübing

The simple linear model

some terminology

$$y_i = a + bx_i$$

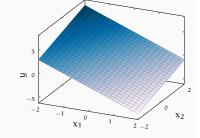
- y is the *outcome* (or response, or dependent) variable. The index i represents each unit observation/measurement (sometimes called a 'case')
- x is the *predictor* (or explanatory, or independent) variable
- a is the *intercept* (called *bias* in the NN literature)
- b is the slope of the regression line.

a and b are called coefficients or parameters

a + bx is the model's prediction of $y(\hat{y})$, given x

Regression models with multiple predictors

- The equation defines a (hyper)plane
- With 2 predictors: $y = w_0 + w_1 x_1 + w_2 x_2$
- With more predictors it is more convenient to use vector notation: y = wx



C. Cöltekin. SfS / University of Tübinger

C. Cöltekin. SfS / University of Tübins

Parameter estimation for regression

Parameter estimation

- In ML, we are interested in finding the best model based
- · Learning is selecting a model from a family of models that differ in their parameters
- Typically, we seek the parameters that reduce the prediction error on a training set
- Ultimately, we seek models that do not only do well on the training data, but also new, unseen instances

• Find w_0 and w_1 , that minimize the sum of the squared errors

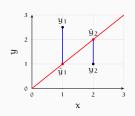
 $E(\mathbf{w}) = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} (y_{i} - \hat{y}_{i})^{2} = \sum_{i} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$

 $w_1 = \frac{\sigma_{xy}}{\sigma_x^2} = r \frac{s d_y}{s d_x} \qquad w_0 = \bar{y} - w_1 \bar{x}$

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization

Estimating regression parameters

- We view learning as a search for the regression equation with least error
- The error terms are also called residuals
- We want error to be low for the whole training set: average (or sum) of the error has to be reduced
- Can we minimize the sum of the errors?



$$y_i = \underbrace{w_0 + w_1 x_i}_{\hat{y}_i} + \varepsilon_i$$

Ç. Çöltekin, SfS / University of Tübing

Ç. Çöltekin, SfS / University of Tübing

Least-squares regression

Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gra

Short digression: minimizing functions

In least squares regression, we want to find w_0 and w_1 values that minimize

$$E(\mathbf{w}) = \sum_{i} (y_i - (w_0 + w_1 x_i))^2$$

- Note that E(w) is a *quadratic* function of $w = (w_0, w_1)$
- As a result, E(w) is *convex* and have a single extreme value - there is a unique solution for our minimization problem
- In case of least squares regression, there is an analytic solution
- · Even if we do not have an analytic solution, if the error function is convex, a search procedure like gradient descent can still find the global minimum

Ç. Çöltekin, SfS / University of Tübingen

Ç. Çöltekin, SfS / University of Tübinge

Regression with multiple predictors

$$y_{i} = \underbrace{w_{0} + w_{1}x_{i,1} + w_{2}x_{i,2} + \ldots + w_{k}x_{i,k}}_{\bullet} + \epsilon_{i} = wx_{i} + \epsilon_{i}$$

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient de

 w_0 is the intercept (as before).

 $w_{1..k}$ are the coefficients of the respective predictors.

- ε is the error term (residual).
- · using vector notation the equation becomes:

$$y_i = wx_i + \epsilon_i$$

where
$$w = (w_0, w_1, ..., w_k)$$
 and $x_i = (1, x_{i,1}, ..., x_{i,k})$

It is a generalization of simple regression with some additional power and complexity.

What is special about least-squares?

• We can minimize E(w) analytically

- Minimizing MSE (or SS_R) is equivalent to MLE estimate under the assumption $\varepsilon \sim \mathcal{N}(0,\sigma^2)$
- Working with 'minus log likelihood' is more convenient

$$E(w) = -\log \mathcal{L}(w) = -\log \prod_{i} \frac{e^{-\frac{(y_i - \hat{y}_i)^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}}$$

$$\hat{\boldsymbol{w}} = \operatorname*{arg\,min}_{\boldsymbol{w}} (-\log \mathcal{L}(\boldsymbol{w})) = \operatorname*{arg\,min}_{\boldsymbol{w}} \sum_{i} (y_i - \hat{y}_i)^2$$

- There are other error functions, e.g., absolute value of the errors, that can be used (and used in practice)
- One can also estimate regression parameters using Bayesian estimation

Evaluating machine learning systems

- Any (machine learning) system needs a way to measure its success
- For measuring success (or failure) in a machine learning system we need quantitative measures
- Remember that we need to measure the success outside the training data

Ç. Çöltekin, SfS / University of Tübinge Ç. Çöltekin, SfS / University of Tübingen

Measuring success in Regression

• Root-mean-square error (RMSE)

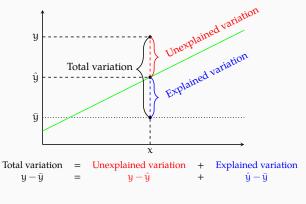
$$\text{RMSE} = \sqrt{\frac{1}{n}\sum_{i}^{n}(y_{i} - \hat{y}_{i})^{2}}$$

measures average error in the units compatible with the outcome variable.

Another well-known measure is the coefficient of determination

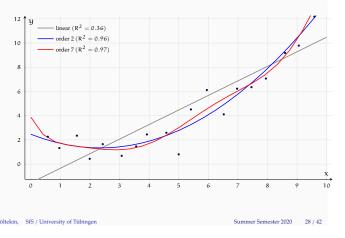
$$R^2 = \frac{\sum_{i}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i}^{n}(y_i - \bar{y})^2} = 1 - \left(\frac{RMSE}{\sigma_y}\right)^2$$

Explained variation



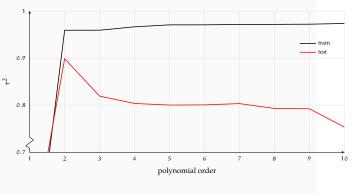
Ç. Çöltekin, SfS / University of Tübinş

Example: polynomial basis functions



Overfitting

demonstration through polynomial regression



We can express the variation explained by a regression model

Explained variation Total variation

- In simple regression, it is the square of the correlation coefficient between the outcome and the predictor
- The range of R² is [0, 1]

Assessing the model fit: R²

as:

- $100 \times R^2$ is interpreted as 'the percentage of variance explained by the model'
- R² shows how well the model fits to the data: closer the data points to the regression line, higher the value of R²

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & reg

Dealing with non-linearity

- · Least-squares estimation works because the regression equation is linear with respect to parameters w (error function is quadratic)
- Introducing non-linear combinations of inputs does not affect the estimation procedure. The following are still

$$y = w_0 + w_1 x^2 + \epsilon$$

$$y = w_0 + w_1 \log(x) + \epsilon$$

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + \epsilon$$

- In general, we can replace input x by a function of the input(s) $\Phi(x)$. $\Phi()$ is called a basis function
- Basis functions allow linear models to model non-linear relations by transforming the input variables

Ç. Çöltekin, SfS / University of Tübinger

Overfitting

- Overfitting is an important problem in ML, happens when the model learns peculiarities/noise in the training data
- · An overfitted model will perform well on training data, but worse on new/unseen data
- Typically 'more complex' models are more likely to overfit

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization

Preventing overfitting

- A straightforward approach is to chose a simpler model (family), e.g., by reducing the number of predictors
- · More training data helps: it is less likely to overfit if number of training instances are (much) larger than the paramters
- There are other methods (one is coming on the next slide)
- We will return to this topic frequently during later lectures

Regularized parameter estimation

- Regularization is a general method for avoiding overfitting
- The idea is to constrain the parameter values in addition to minimizing the training error
- For example, the regression estimation becomes:

$$\hat{\boldsymbol{w}} = \operatorname*{arg\,min}_{w} \sum_{i} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{k} w_j^2$$

- The new part is called the regularization term,
- \bullet λ is a *hyperparameter* that determines the strength of the regularization
- In effect, we are preferring small values for the coefficients
- Note that we do not include w_0 in the regularization term

L1 regularization

In L1 regularization we minimize

$$J(w) + \lambda \sum_{j=1}^{k} |w_j|$$

- The additional term is the L1-norm of the weight vector (excluding w_0)
- $\bullet\,$ In statistics literature the L1-regularized regression is called lasso
- The main difference from L2 regularization is that L1 regularization forces some values to be 0 - the resulting model is said to be 'sparse'

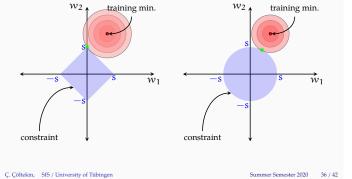
Ç. Çöltekin, SfS / University of Tübinger

L1 regularization

L2 regularization

neter estimation Evaluation Non-linearity Overfitting & regularization Gradient de

Visualization of regularization constraints



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predic

Gradient descent for parameter estimation

- In many ML problems, we do not have a closed form solution for finding the minimum of the error function
- · In these cases, we use a search strategy
- Gradient descent is a search method for finding a minimum of a (error) function
- The general idea is to approach a minimum of the error function in small steps

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla \mathbf{J}(\mathbf{w})$$

 $\nabla J \;$ is the gradient of the loss function, it points to the direction of the maximum increase

 η is the learning rate

L2 regularization

The form of regularization, where we minimize the regularized cost function,

$$J(\mathbf{w}) + \lambda \|\mathbf{w}\|_2$$

is called L2 regularization.

- · Note that we are minimizing the L2-norm of the weight
- In statistic literature L2-regularized regression is called ridge regression
- The method is general: it can be applied to other ML methods as well
- The choice of λ is important
- Note that the scale of the input also becomes important

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient d

Regularization as constrained optimization

L1 and L2 regularization can be viewed as minimization with

L2 regularization

Minimize J(w) with constraint ||w|| < s

L1 regularization

Minimize J(w) with constraint $||w||_1 < s$

Ç. Çöltekin, SfS / University of Tübing

Parameter estimation Evaluation Non-linearity Overfitting & regularization Gra

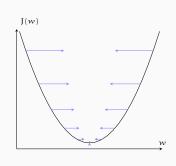
Regularization: some remarks

- · Regularization prevents overfitting
- The hyperparameter λ needs to be determined
 - best value is found typically using a grid search, or a random search
 - it is tuned on an additional partition of the data, development set
 - development set cannot overlap with training or test set
- The regularization terms can be interpreted as priors in a Bayesian setting
- Particularly, L2 regularization is equivalent to a normal prior with zero mean

ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient de

Gradient descent with single parameter

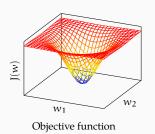
- · For a single parameter, gradient is a one-dimensional vector
- · The direction of gradient is towards the maximum increase
- · We take steps proportional to $-\nabla J(w)$
- · Steeper the curve, the larger the parameter update

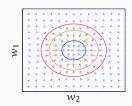


Ç. Çöltekin, SfS / University of Tübingen

C. Cöltekin. SfS / University of Tübinge

Gradient descent with single parameter





Negative gradients

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020

40 / 42

Categorical predictors

- Categorical predictors are represented as multiple binary coded input variables
- For a binary predictor, we use a single binary input. For example, (1 for one of the values, and 0 for the other)

$$x = \begin{cases} 0 & \text{for male} \\ 1 & \text{for female} \end{cases}$$

 For a categorical predictor with k values, we use one-hot encoding (other coding schemes are possible)

$$\mathbf{x} = \begin{cases} (0,0,1) & \text{neutral} \\ (0,1,0) & \text{negative} \\ (1,0,0) & \text{positive} \end{cases}$$

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020

41 / 42

IL intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Summary

What to remember:

- Supervised vs. unsupervised learning
- Regression vs. classification
- Linear regression equation
- Least-square estimate
- MSE, R²
- non-linearity & basis functions
- L1 & L2 regularization (lasso and ridge)

Next:

Wed,Fri classification

Mon ML evaluation

42 / 42

Additional reading, references, credits

- Hastie, Tibshirani, and Friedman (2009) discuss introductory bits in chapter 1, and regression on chapter 3 (sections 3.2 and 3.4 are most relevant to this lecture)
- Jurafsky and Martin (2009) has a short section (6.6.1) on regression
- You can also consult any machine learning book (including the ones listed below)

Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. ISBN: 978052151814

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second. Springer series in statistics. Springer-Verlag New York. ISBN: 9780387848587. URL: http://web.stanford.edu/hastie/ElemeStatLearn/.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An Introduction to Statistical Learning: with Applications in 1 Springer Texts in Statistics. Springer New York. ISBN: 9781461471387. URL: http://www-bcf.usc.edu/grageth/ISL

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing: Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. susc. 978-01-35-0419-63.

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020

Ç. Çöltekin, SfS / University of Tübingen

Additional reading, references, credits (cont.)

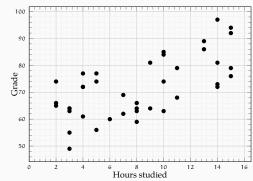
Mitchell, Thomas (1997). Machine Learning. 1st. McGraw Hill Higher Education. ISBN: 0071154671.0070428077.9780071154673.9780070428072.

Ç. Çöltekin, SfS / University of Tübinger

Summer Semester 2020 A.2

A hands-on exercise

Draw a regression line over the plot

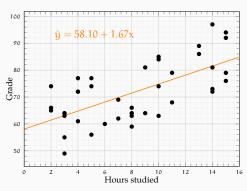


Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020 A.3

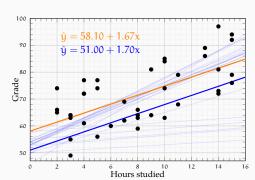
A hands-on exercise

The regression line



A hands-on exercise

Your estimates

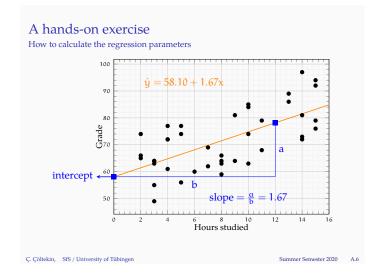


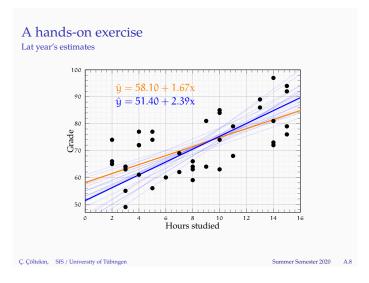
Ç. Çöltekin, SfS / University of Tübinge

2020 A.

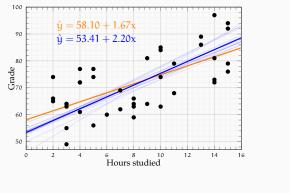
Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020





Your estimates (some removed)



Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2020