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Figure 3.1: Schematic description of
the noisy-channel model. The encoder
codes the message and sends through
a noisy channel to the decoder. The
encoded message may possibly be cor-
rupted during the transmission. The
decoder’s task is to reconstruct the
original message, despite the potential
noise introduced.

1 Can the decoder correct the error in
Figure 3.1?

3 Information theory

The field of information theory is concerned with measurement, stor-
age and transmission of information. It has its roots in communica-
tion theory, but it is used in many different fields including machine
learning and natural language processing. In this chapter, we briefly
introduce some of the main ideas, and discuss a few important infor-
mation theoretic measures that will be used in the rest of the course.

3.1 The noisy channel model

A basic motivation in information theory is to characterize the com-
munication over a noisy channel. In a noisy channel model, as the
one depicted in Figure 3.1, the sender encodes the given message,
and sends it through the channel, but the receiver receives a possibly
corrupted version of the coded message.

The task of the decoder is to recover the original message, even if
there are some errors introduced in the noisy channel. There are two
competing objectives within the noisy channel model. First, we want
to use codes that make use of the channel capacity as efficiently as pos-
sible. We want coding schemes that result in short coded messages,
to transmit or store. This is where the strong connection between the
information theory and compression comes into the picture. Second,
we want to be able to detect and correct the errors introduced by the
noisy channel. An obvious way to detect and correct errors is to send
multiple copies of the code. As we introduce more redundant copies,
it is more likely to recover the original message. However, replica-
tion also wastes the bandwidth of the channel. Coding information
efficiently, while allowing error detection and error correction is the
fundamental motivation in information theory. The example code in
Figure 3.1, is simply the ASCII code followed by an odd parity bit,
which means the last bit is set to 1 if the number of 1s in the code
is an odd number, otherwise, the last bit is set to 0. Note that with
the given code at hand, the decoder can detect the error.1 Here, we
will not discuss error-correcting codes, neither most of the other fas-
cinating topics in information theory. Interested readers are referred
to the textbooks on information theory, such as MacKay (2003).

Clearly, the noisy channel model is useful in the study of com-
puter networks. However, it has many other uses. Note that the
channel does not have to be a network connection. For example, the
model fits equally well to storing data to a permanent storage. Per-
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manent storage systems (e.g., hard disks) are fairly accurate, how-
ever, they are not error free. As a result, error resilience and effi-
ciency is a concern here too. The encoder encodes the information,
and sends it to the disk, the decoder reads code (possibly after a
long time) from the disk and has to make sure that the information
decoded was not corrupted.

Beyond those obvious extensions, the noisy channel model found
its use in many other applications. For an example close to home, we
often model speech recognition with a noisy channel model. The in-
formation here is a linguistic message, e.g., a sentence. The speaker
codes this information as an acoustic signal, and the recognizer’s
task is to decode the sentence from the acoustic signal (code). An-
other common use for the noisy channel model in NLP is in machine
translation, which we will return later. We will not further discuss
the applications of the noisy channel model here. However, we in-
troduce some of the concepts, particularly some measures, that have
very frequent uses in machine learning and NLP.

3.2 Entropy and information

In information theory, entropy is a measure of uncertainty. The mea-
sure is analogous to ‘physical’ entropy measure in statistical ther-
modynamics, but measures the uncertainty of an information sys-
tem rather than a physical system. In ambiguous contexts, it is also
called information entropy or Shannon entropy after Claude Shannon,
the inventor of the measure and the founder of the field. Entropy
and information are tightly connected concepts. More concretely, in-
formation in a message (e.g., in the noisy channel model described
above) is the reduction of entropy after receiving the message.

Before introducing entropy properly, we will first introduce a re-
lated measure surprisal, which is also called self information or infor-
mation content. The information theoretic measure of surprisal of an
event x is defined as

log
1

P(x)
= −logP(x). (3.1)

If the probability of the event is 1 (event occurs with certainty) the
surprisal will be 0. For events with decreasing probabilities, we will
get higher values for surprisal. The value of surprisal will approach
to ∞ while the probability of the event approaches to 0.

The base of the logarithm in Equation 3.1 is not very important,
since the logarithms in a different base can be obtained by multipli-
cation with a constant (with a linear transformation). Most common
choices include base 2 logarithms, which results in surprisal (or in-
formation) measured in bits. If we use natural logarithm (with base
e, Euler’s number), than the unit is called nat. In this course we will
always use base-2 logarithms, and measure the information in bits.

The same quantity having names ‘surprisal’ and ‘self information’
may not sound right very intuitive first sight. The intuition here is
that we learn more from low-probability events. Low probability
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2 If the number is not picked randomly,
but follows a known non-uniform dis-
tribution, a different strategy may yield
a faster solution. In fact, uniform dis-
tribution is the distribution with the
highest entropy. If the first player
samples the numbers from any other
(known) distribution, there will always
be a strategy that predicts the target
number with fewer guesses on average.

events are surprising, but also have more information content. There
is nothing surprising with a weather report that tells it will rain in a
very rainy country. It also does not have much information content,
we can already predict it. But if it predicts a sunny day in the middle
of a rainy season, then it is surprising as well as news-worthy, it
contains more information.

Entropy of a system is the average surprisal. We define entropy,
H, of a random variable X as

H(X) = −
∑
x∈X

P(x)logP(x) (3.2)

where, x ranges over all values of X. The above definition is for dis-
crete variables, which is much more common in NLP. The notion of
entropy can be extended to continuous random variables, by replac-
ing the sum with an integral and P(x) with the appropriate probabil-
ity density function. The resulting definition (for continuous random
variables) is called differential entropy.

To get a sense of what entropy does, consider the ‘guess the num-
ber’ game, where the first player picks a number between 1 and a
larger number M, (say 32), and the task of the second player is to
guess the number. After every guess, the first player tells whether
the guess was larger or smaller than the number the second player
predicted. Assuming the first player picks the number completely
randomly (samples from the uniform distribution), and if the second
player follows the optimum strategy (binary search), the first player
will need to make log2M guesses at most.2 Which is exactly what
you will find if you use Equation 3.2, to calculate the entropy of this
system. For M = 32,

H = −
∑

16x632

1

32
log2

1

32
= −32

1

32
log2

1

32
= − log2

1

32
= 5.

Note that since the numbers are equally likely, probabilities for each
number is the same (1/32). As a result, at the beginning we have 5

bits of entropy. You should also see that we reduce the entropy by
1 bit for every guess (unless we guess the correct number). Hence,
information we gain with every guess is 1 bit.

It is important to realize that the entropy, or the information, in-
crease or decrease proportional to the logarithm of the states (the
numbers). If we double the range of numbers to pick from, the en-
tropy will not double, but only increase with one bit. This logarith-
mic relationship is convenient, since states of many systems we are
interested in grow exponentially.

To get a sense of why logarithm is a good idea, consider storage
or transmission of a 8-letter alphabet on a binary medium. We can
use as many bits as the number of letters (setting one of the bits to
1, and the rest to 0, similar to the one-hot representation discussed
in Section 2.2), but this is wasteful. The optimum coding would not
require 8 bits. We can easily represent 8 letters letters with 3 bits,
which turns out to be exaclty log2 8. An example coding of 8-letter
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Table 3.1: Example binary coding of an
eight letter alphabet.

letter code

a 000

b 001

c 010

d 011

e 100

f 101

g 110

h 111

0 0.5 1
0

0.5

1

P(X = 1)

H(X)

Figure 3.2: Entropy of Bernoulli ran-
dom variables (in bits) as a function of
the parameter p.

alphabet is shown in Table 3.1. Note that if we double the number of
letters, we would not need to double the number of bits used, all we
need to do is add one more bit. Hence, the number of bits needed to
represent M letters is log2M. This is optimum if the letters we want
to transmit are distributed uniformly. We will soon see that we can
do better, if we have more structure in the distribution of the letters.

For simplicity, we assumed uniform distribution in the discus-
sion/demonstration above. What if the distribution of the random
variable is not uniform? To answer this question, consider a Bernoulli
trial, for example, a coin-toss experiment or picking letters from a
two-letter alphabet. If the letters were equally probable as in our
earlier example, the entropy would be,

H = −
(
0.5× log2 0.5+ 0.5× log2 0.5

)
= − log2 0.5 = 1.

So, the entropy of a Bernoulli random variable with equal proba-
bilities (p = 0.5), such as outcome of a fair coin toss, is 1 bit. We
can also calculate the entropy with non-equal probability values. For
example, entropy of a Bernoulli random variable with p = 0.8,

H = −
(
0.8× log2 0.8+ 0.2× log2 0.2

)
= 0.72.

Note that the entropy reduced from 1 bit to 0.72 bits. This should be
intuitive, since knowing that some of the outcomes are more likely
than others reduces the average surprisal. If we do the above calcula-
tions for the parameter of Bernoulli distribution p in range [0, 1], we
get the graph in Figure 3.2. If the outcome of the variable is certain
with p = 1 or p = 0, then the entropy is 0, and the entropy peaks at
0.5, with a value of 1 bit, where the uncertainty is at its maximum.

In general, uniform distribution is the distribution with the maxi-
mum entropy for distributions with the same support (the set of val-
ues/events the distribution has non-zero probability). If the number
of outcomes increase, the uncertainty and the entropy will increase.
And, as the distribution diverges from the uniform distribution by
assigning higher probabilities to a small set of events, the entropy
will decrease. Figure 3.3 demonstrates these two factors with the
categorical distribution.

H = 0 H = 1 H = 2 H = 1.79 H = 1.21

Figure 3.3: Demonstration of entropy
values (in bits) with the categorical
distribution. First three circles from
the left represent uniform categori-
cal distributions with increasing num-
ber of categories. Increasing possi-
ble outcomes increase the uncertainty,
hence the entropy. Last three cir-
cles demonstrate categorical distribu-
tions with equal number of possible
outcomes. As the distribution diverge
from the uniform distribution, the un-
certainty and entropy is reduced.

By now, you should be able to calculate the entropy of a categori-
cal distribution over 8 symbols, just like the letters in Table 3.1. Given
that these letters are distributed uniformly (each having probability
of 1/8), the entropy of the distribution is 3 bits, which corresponds
to how many bits we need for optimally coding the alphabet. We
noted that we can do better if the distribution was not uniform. Let
us assume that, the letter ‘a’ occurs with probability 1/2, the letter ‘b’
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Table 3.2: Example Huffman coding of
an eight letter alphabet.

letter prob code

a 1/2 0

b 1/4 10

c 1/8 110

d 1/16 1110

e 1/64 111100

f 1/64 111101

g 1/64 111110

h 1/64 111111

Table 3.3: Joint probability table for let-
ters and dialects with marginal proba-
bilities. P(D) is the (marginal) proba-
bility of dialects, and P(L) is the prob-
ability of letters in the corpus. This is
the same as Table 2.7, repeated here for
convenience.

let. east north south P(L)

a 0.20 0.01 0.03 0.23
b 0.03 0.01 0.00 0.04
c 0.03 0.01 0.01 0.05
d 0.06 0.01 0.01 0.08
e 0.17 0.10 0.02 0.29
f 0.02 0.00 0.01 0.03
g 0.05 0.01 0.00 0.06
h 0.15 0.04 0.03 0.22

P(D) 0.70 0.20 0.10 1.00

occurs with probability 1/4, the letter ‘c’ occurs with probability 1/8,
the letter ‘d’ occurs with probability 1/16, and the other letters occur
with probability 1/64. Now, using three bits for all combinations is
just wasteful. We can do much better with the codes in Table 3.2. The
type of coding example here is called Huffmann coding. Although the
number of bits are variable, we can unambiguously determine each
code with its prefix. One can easily show that this coding requires
less storage or channel bandwidth on average. In fact, this corre-
sponds to the entropy of the distribution, which is 2 bits: we save 1

bit on average. This is exactly another way to interpret entropy, it is
the average code-length for the best achievable code for a given dis-
tribution. In other words, entropy gives us the upper bound on an
optimal encoder (in terms of efficient channel utilization) in a noisy
channel model (Figure 3.1).

To give a more concrete example, we re-introduce our dialects
with eight letters from Chapter 2. Table 3.3 lists the joint probabilities
of letters and dialects (east, north and south), as well as marginal
probabilities. From this table, we can easily calculate the entropy of
the distributions of letters for the complete language, and the entropy
of the letter distribution for each dialect. Now you should take a
moment and try to phrase what high or low entropy means for letters
or dialects. For the sake of making things more concrete, we will
calculate the entropy of dialect distribution in our document set:

H(D) = − (0.7× log20.7+ 0.2× log20.2+ 0.1× log20.1) = 1.16.

The entropy is lower than a uniform distribution of letters over the
dialects which is 1.58. In other words, by knowing P(D), we gain
0.43 bits of information, in comparison to a setting where the dialects
were equally represented in the data.

The distribution over individual letters is more interesting, you
are encouraged to calculate the entropy of letters (P(L)) and compare
it with a uniform distribution. Note that if you want to calculate
entropy of letters within each dialect, you need conditional proba-
bilities, e.g., P(L |D = east), for calculating letter-entropy values of
individual dialects.

Note that entropy is about complete probability distributions,
while surprisal is about probabilities of individual events.

3.3 Mutual Information and conditional entropy

Another very important quantity from information theory used widely
in computational and corpus linguistics is mutual information. Mutual
information measures the amount of information obtained (reduced
entropy) about a random variable, by knowledge of another random
variable. Mutual information is a measure of dependence between
two variables. If the variables are dependent (provide information
about each other), then the mutual information will be high. If the
variables are independent the mutual information will be 0.
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As we did with introduction to entropy, we will first introduce
another relevant measure, pointwise mutual information (PMI), which
measures the (in)dependence of two events. The PMI value for two
events X = x (or simply x) and Y = y (or y) is calculated by

PMI(x,y) = log
P(x,y)
P(x)P(y)

(3.3)

A quick study of the formula indicates that pointwise mutual in-
formation is high if the joint probability of the two events involved
is high. However, since the high-probability events can cooccur by
chance frequently, the denominator of the term in Equation 3.3 in-
cludes (marginal) probabilities of both events. Hence, it discounts the
by-chance cooccurrences of the events due to high marginal proba-
bility. Remember that the joint probability of two independent events
is the product of their probabilities (P(x,y) = P(x)P(y), for indepen-
dent events x and y). As a result, the division within the logarithm
in Equation 3.3 will result in 1, and PMI will be 0, for independent
events. If two events are highly positively associated (they occur
together), then PMI will be positive, and if events are highly nega-
tively associated (one does not occur if the other event occurs), then
the PMI value will be negative.

Just for the sake of example, we will calculate the PMI of letter
‘e’ occurring in the ‘east’ dialect in the distribution presented in Ta-
ble 3.3.

PMI(east, e) = log
P(east, e)
P(east)P(e)

= log
0.17

0.70× 0.29
= −0.22

Despite the fact that the joint probability of the two events is rather
high, we find a negative association between them, which indicates
that the letter ‘e’ occurs less than chance in the eastern dialect.

One of the common uses of PMI in corpus linguistics is to find col-
locations, groups of words that occur frequently together. Using PMI,
it is likely to find linguistically plausible collocations like, ‘corpus lin-
guistics’, even though it is much less frequent than non-interesting
frequent bigrams like ‘that the’.

The mutual information (MI) of two random variables is a measure
of dependence of the variables. Mutual information is the expected
value of (average) PMI. The mutual information of two discrete ran-
dom variables X and Y is

MI(X, Y) =
∑
x∈X

∑
y∈Y

P(x,y) log
P(x,y)
P(x)P(y)

. (3.4)

Similar to PMI, a positive MI value indicates a positive associa-
tion between the random variables, zero indicates independence (no
association), and negative values indicate negative association. Like
correlation (Section 2.10), mutual information measures dependence
between two random variables. However, unlike correlation, it is not
limited to linear dependence.

Mutual information is related to entropy through a measure known
as conditional entropy. We note the conditional entropy of a random
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3 You are recommended to derive this
equation. Meanwhile, you may also
want to show that

H(X |Y) =
∑

x∈X,y∈Y

P(x,y) log
P(y)

P(x,y)

is also correct.

H(X)

H(Y)
H(X |Y)

H(Y |X)

MI(X,Y)

H(X,Y)

Figure 3.4: Relation between condi-
tional entropy entropy and mutual in-
formation. The total shaded area is the
joint entropy of two variables H(X,Y).

variable X given another random variable Y takes the value y as
H(X | Y = y). Intuitively, if the event Y = y gives information about
the random variable X, we expect low conditional entropy. The con-
ditional entropy of X given Y, noted H(X | Y), is the average entropy
of X given Y. The conditional entropy of X given Y can be calculated
by3

H(X | Y) =
∑
y∈Y

P(y)H(X | Y = y)

= −
∑

x∈X,y∈Y

P(x,y) logP(x | y).
(3.5)

The conditional entropy has also a straightforward interpretation.
The conditional entropy H(X | Y) equals to the entropy of the vari-
able X (H(X)), if the variables are independent. As the dependence
between variables increase, the conditional entropy will decrease.

Note that entropy, conditional entropy, and mutual information
are all related. Figure 3.4 shows the relationship between these mea-
sures schematically using a Venn diagram. For example, we can see
from the figure that H(X, Y) = H(X) + H(Y) −MI(X, Y). The total
entropy associated with two random variables is reduced if the mu-
tual information (dependence) between them is high. If one of the
variables (Y) completely determines the other (Y), the conditional en-
tropy (H(X|Y)) will be 0, the joint entropy will be equal to the entropy
of one one of the variables (H(Y)), and mutual information will be
equal to entropy of the other variable H(X). The mutual information
is symmetric (MI(X, Y) = MI(Y,X)), while conditional entropy is not
(H(X | Y) 6= H(Y | X)). Also note that the relationships between the
information theoretic measures are additive, while the relationship
between the corresponding probabilities are multiplicative.

3.4 Cross entropy

Cross entropy is another important concept from information theory
that has wide usage, particularly in machine learning. Remember
that entropy gives us the best achievable compression given a distri-
bution. In many practical cases we do not know the true distribution
of the data, instead we use an approximation. If we do not use the
true distribution, inevitably, our code will be less optimum. This
means that we will get higher entropy. If the true distribution is P(x)

and the its approximation is P̂(x), the cross entropy is defined as

H(P, P̂) = −
∑
x

P(x)logP̂(x). (3.6)

The hat-notation used here is used for estimated objects. If P was the
true distribution, we would note an estimation of it as P̂. Although
this is most common context we will see cross entropy used, the
distribution P̂ does not have to be an estimate of P. Note that the
notation H(X, Y) is also used for joint entropy, but for joint entropy
the arguments are random variables noted like X and Y, and for cross
entropy distribution functions noted with letters like P and Q.
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Table 3.4: Probability distributions of
letters in our hypothetical dialect data.
P(L |D = east) is the distribution of
letters given the dialect is east dialect,
P(L) is the marginal distribution of let-
ters (for all dialects).

let. P(L | east) P(L)

a 0.28 0.23
b 0.04 0.04
c 0.04 0.05
d 0.09 0.08
e 0.25 0.29
f 0.02 0.03
g 0.07 0.06
h 0.21 0.22

−5 5

P Q

DKL(P ‖ Q)DKL(Q ‖ P)

Figure 3.5: Visualization of KL di-
vergences between two distributions.
Note, however, this is a demonstration
to show the asymmetry of measure, the
areas indicated are not exactly what
KL-divergence measures.

The formula above makes sense if you think about it in terms of
the noisy channel model. Since we are coding the data using P̂, the
code length is determined by the approximate model. However, the
average is taken over the true distribution, hence, we multiply by
P(x) not P̂(x). Cross entropy is always larger than entropy. Using a
wrong (approximate) distribution to code the data results in a longer
code length. As P̂ gets closer to the P, the cross entropy will approach
the entropy of P. Note that cross entropy is not symmetric (H(P,Q) 6=
H(Q,P)).

A very common use of cross entropy is as a loss function in some
machine learning methods. In many machine learning methods,
training a model is equivalent to minimizing a loss function. Hence,
as we minimize cross entropy of true distribution that comes from
the training data and the approximate distribution the machine learn-
ing system produces, we get closer to the true distribution of the an-
swers we are seeking. That way, the output of the machine learning
model becomes more similar to the expected output. We will see
example uses of cross entropy later in this course.

For a concrete example, we return to the hypothetical dialects with
8-letter alphabets in Table 3.3. Assume that we do not know the
distribution of the letters in the eastern dialect, and we are using
the total distribution for coding (e.g., compressing) the data from the
eastern dialect. Both distributions are summarized in Table 3.4. We
simply calculate cross entropy by

H (P(L | east),P(L)) = −
∑

x∈letters

P(x | east) log2 P(x) = 2.577.

As expected, this is larger than entropy of P(L | east), which is 2.562
bits.

3.5 Perplexity

A measure related to entropy, used often in computational linguistic
literature, is perplexity (PP). Perplexity is simply the exponentiated
version of entropy. If we measure entropy in bits, then the perplexity
is

PP(X) = 2H(X).

Like entropy, perplexity measures uncertainty. However, since it
measures it in a different scale, sometime it offers a more intuitive
interpretation. Its main use in NLP is evaluating language models,
which are conditional distributions on words given a history of ear-
lier words. In this context, the intuitive interpretation is the average
number of words expected after each word.

3.6 Kullback–Leibler divergence

Another important quantity we often see during this course is Kull-
back–Leibler divergence which is also known as relative entropy. It is
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4 Remember that

log
a

b
= log(a)− log(b).

often abbreviated as KL divergence. Similar to cross entropy, KL diver-
gence is a about two probability distributions with the same support.
It measures the amount of information lost, or extra bits of entropy,
while using a distribution Q instead of using the true distribution P.
It is defined as,

DKL(P ‖ Q) = −
∑
x

P(x) log
P(x)

Q(x)
. (3.7)

It is the average logarithmic difference between distributions P and
Q,4 where average calculated according to P. KL divergence is often
used as a measure of difference between two distributions. However,
it is not symmetric (as a result, it is not a proper distance measure).
Figure ?? visualizes the KL divergence between two continuous dis-
tributions. For continuous distributions, as usual, you can simply re-
place probability mass functions with probability density functions,
and the summation with the integral in Equation 3.7.

For a concrete example, we will return to the question of using an
approximate distribution, the marginal letter distribution, instead of
one of the conditional distributions in our letter distribution example
in Table 3.4. As in our cross entropy example, assume that we do not
know the distribution of the eastern dialect, and approximating it
with the marginal distribution. If we do the calculation,

DKL (P(L | east) ‖ P(L)) = −
∑
x

P(x|east) log
P(x|east)

P(x)
= 0.015

which is the amount of information we lose by using the marginal
distribution instead of the dialect-specific distribution in bits.

Conceptually, you should already be expecting a link between the
cross entropy and the KL divergence divergence. Cross entropy mea-
sures the entropy of a distribution (P) under another distribution (Q),
while KL divergence measures the amount of additional entropy if
one uses one distribution (Q) instead of another (P). As a result,

H(P,Q) = H(P) +DKL(P ‖ Q).

You can easily verify this with our running example of dialect
letter distributions as well (maybe with some rounding error).

Summary

This lecture is another quick and informal refresher on one of the im-
portant background fields that we use in this course. For more infor-
mation you should consult textbooks on the subject such as MacKay
(2003). Also, the original paper by Shannon (1948) which introduced
some of the important concepts and in a way started the filed is ac-
cessible, and relevant to NLP.
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