Statistical Natural Language Processing Dense vector representations

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2020

Representations of linguistic units

- Most ML methods we use depend on how we represent the objects of interest, such as
 - words, morphemes
 - sentences, phrases
 - letters, phonemes
 - documents
 - speakers, authors
 - ...
- The way we represent these objects interacts with the ML methods
- We will mostly talk about word representations
 - They are also applicable any of the above and more

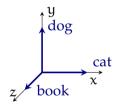
Symbolic (one-hot) representations

A common way to represent words is one-hot vectors

$$cat = (0, ..., 1, 0, 0, ..., 0)$$

$$dog = (0, ..., 0, 1, 0, ..., 0)$$

$$book = (0, ..., 0, 0, 1, ..., 0)$$
...



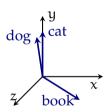
- No notion of similarity
- Large and sparse vectors

More useful vector representations

• The idea is to represent similar words with similar vectors

$$cat = (0, 3, 1, ..., 4)$$

 $dog = (0, 3, 0, ..., 3)$
 $book = (4, 1, 4, ..., 5)$
...



- The similarity between the vectors may represent similarities based on
 - syntactic
 - semantic
 - topical
 - form
 - ... features useful in a particular task

Where do the vector representations come from?

- The vectors are (almost certainly) learned from data
- Typically using an unsupervised (or self-supervised) method
- The idea goes back to, You shall know a word by the company it keeps. —Firth (1957)
- In practice, we make use of the contexts (company) of the words to determine their representations
- The words that appear in similar contexts are mapped to similar representations

count word in context

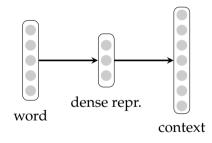
- + Now words that appear in the same contexts will have similar vectors
- The frequencies are often normalized (PMI, TF-IDF)
- The data is highly correlated: lots of redundant information
- Still large and sparse

count, factorize, truncate

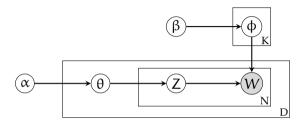
$$\begin{bmatrix} c_1 & c_2 & c_3 & \dots & c_m \\ w_1 & 0 & 3 & 1 & \dots & 4 \\ w_2 & 0 & 3 & 0 & \dots & 3 \\ 4 & 1 & 4 & \dots & 5 \end{bmatrix} =$$

predict the context from the word, or word from the context

- The task is predicting
 - the context of the word from the word itself
 - or the word from its context.
- Task itself is not (necessarily) interesting
- We are interested in the hidden layer representations learned



latent variable models (e.g., LDA)



- Assume that the each 'document' is generated based on a mixture of latent variables
- Learn the probability distributions
- Typically used for *topic modeling* (θ)
- Can model words too (φ)

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:

S1: She likes cats and dogs

S2: He likes dogs and cats

S3: She likes books

S4: He reads books

Term-document (sentence) matrix

		\		/
	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:

S1: She likes cats and dogs

S2: He likes dogs and cats

S3: She likes books

S4: He reads books

Term-term (left-context) matrix

						<u> </u>			
	#	sh_{e}	h_{e}	likes	read_S	cats	q_{0gs}	$book_S$	pup
she	2	0	0	0	0	0	0	0	0
he	2	0	0	0	0	0	0	0	0
likes	0	2	1	0	0	0	0	0	0
reads	0	0	1	0	0	0	0	0	0
cats	0	0	0	1	0	0	0	0	1
dogs	0	0	0	1	0	0	0	0	1
books	0	0	0	1	1	0	0	0	0
and	0	0	0	0	0	1	1	0	0

Term-document matrices

- The rows are about the terms: similar terms appear in similar contexts
- The columns are about the context: similar contexts contain similar words
- The term-context matrices are typically sparse and large

Term-document (sentence) matrix

	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

SVD (again)

- Singular value decomposition is a well-known method in linear algebra
- An n × m (n terms m documents) term-document matrix X can be decomposed as

$$X = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$$

- U is a $n \times r$ unitary matrix, where r is the rank of X ($r \leq min(n, m)$). Columns of U are the eigenvectors of XX^T
- Σ is a r × r diagonal matrix of singular values (square root of eigenvalues of XX^T and X^TX)
- V^T is a $r \times m$ unitary matrix. Columns of V are the eigenvectors of X^TX
- ullet One can consider $oldsymbol{U}$ and $oldsymbol{V}$ as PCA performed for reducing dimensionality of rows (terms) and columns (documents)

Truncated SVD

$$X = U\Sigma V^{T}$$

- Using eigenvectors (from ${\bf U}$ and ${\bf V}$) that correspond to k largest singular values (k < r), allows reducing dimensionality of the data with minimum loss
- The approximation,

$$\hat{X} = U_k \Sigma_k V_k$$

results in the best approximation of X, such that $\|\hat{X} - X\|_F$ is minimum

Truncated SVD

$$X = U\Sigma V^{T}$$

- Using eigenvectors (from \mathbf{U} and \mathbf{V}) that correspond to k largest singular values (k < r), allows reducing dimensionality of the data with minimum loss
- The approximation,

$$\hat{X} = U_k \Sigma_k V_k$$

results in the best approximation of X, such that $\|\hat{X} - X\|_F$ is minimum

• Note that r and n may easily be millions (of words or contexts), while we choose k much smaller (a few hundreds)

Truncated SVD (2)

$$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \dots & x_{1,m} \\ x_{2,1} & x_{2,2} & x_{2,3} & \dots & x_{2,m} \\ x_{3,1} & x_{3,2} & x_{3,3} & \dots & x_{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & x_{n,3} & \dots & x_{n,m} \end{bmatrix} =$$

$$\begin{bmatrix} u_{1,1} & \dots & u_{1,k} \\ u_{2,1} & \dots & u_{2,k} \\ u_{3,1} & \dots & u_{3,k} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \dots & u_{n,k} \end{bmatrix} \times \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_k \end{bmatrix} \times \begin{bmatrix} \nu_{1,1} & \nu_{1,2} & \dots & \nu_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ \nu_{k,1} & \nu_{k,2} & \dots & \nu_{n,m} \end{bmatrix}$$

Truncated SVD (2)

$$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \dots & x_{1,m} \\ x_{2,1} & x_{2,2} & x_{2,3} & \dots & x_{2,m} \\ x_{3,1} & x_{3,2} & x_{3,3} & \dots & x_{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & x_{n,3} & \dots & x_{n,m} \end{bmatrix} =$$

$$\begin{bmatrix} u_{1,1} & \dots & u_{1,k} \\ u_{2,1} & \dots & u_{2,k} \\ u_{3,1} & \dots & u_{3,k} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \dots & u_{n,k} \end{bmatrix} \times \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_k \end{bmatrix} \times \begin{bmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ v_{k,1} & v_{k,2} & \dots & v_{n,m} \end{bmatrix}$$

The term₁ can be represented using the first row of \mathbf{U}_k

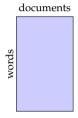
Truncated SVD (2)

$$\begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \dots & x_{1,m} \\ x_{2,1} & x_{2,2} & x_{2,3} & \dots & x_{2,m} \\ x_{3,1} & x_{3,2} & x_{3,3} & \dots & x_{3,m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & x_{n,3} & \dots & x_{n,m} \end{bmatrix} =$$

$$\begin{bmatrix} u_{1,1} & \dots & u_{1,k} \\ u_{2,1} & \dots & u_{2,k} \\ u_{3,1} & \dots & u_{3,k} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \dots & u_{n,n} \end{bmatrix} \times \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_k \end{bmatrix} \times \begin{bmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ v_{k,1} & v_{k,2} & \dots & v_{n,m} \end{bmatrix}$$

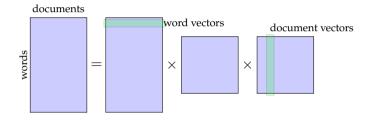
The document₁ can be represented using the first column of V_k^T

Truncated SVD: with a picture



Step 1 Get word-context associations

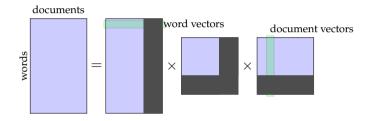
Truncated SVD: with a picture



Step 1 Get word-context associations

Step 2 Decompose

Truncated SVD: with a picture



- Step 1 Get word-context associations
- Step 2 Decompose
- Step 3 Truncate

Truncated SVD example

The corpus:

- (S1) She likes cats and dogs
- (S2) He likes dogs and cats
- (S3) She likes books
- (S4) He reads books

	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

Truncated SVD (k = 2)

$$\mathbf{U} = \begin{bmatrix} -0.30 & 0.28 \\ -0.24 & -0.63 \\ -0.52 & 0.15 \\ -0.03 & -0.49 \\ -0.43 & 0.01 \\ -0.43 & 0.01 \\ -0.03 & -0.49 \\ -0.43 & 0.01 \end{bmatrix} \begin{array}{l} \text{she} \\ \text{he} \\ \text{likes} \\ \text{reads} \\ \text{cats} \\ \text{dogs} \\ \text{books} \\ \text{and} \\ \end{array}$$

$$\Sigma = \begin{bmatrix} 3.11 & 0 \\ 0 & 1.81 \end{bmatrix}$$

$$S1 & S2 & S3 & S4$$

$$V^{T} = \begin{bmatrix} -0.68 & 0.26 & -0.11 & -0.66 \\ -0.66 & -0.23 & 0.48 & 0.50 \end{bmatrix}$$

Truncated SVD (with BOW sentence context)

```
she
likes
 cats
dogsand
         reads
        books
      he
```

The corpus:

(S1) She likes cats and dogs

(S2) He likes dogs and cats

(S3) She likes books

(S4) He reads books

Truncated SVD (with single word context)

he she reads and likes dogs cats books

The corpus:

(S1) She likes cats and dogs

(S2) He likes dogs and cats

(S3) She likes books

(S4) He reads books

SVD: LSI/LSA

SVD applied to term-document matrices are called

- Latent semantic analysis (LSA) if the aim is constructing term vectors
 - Semantically similar words are closer to each other in the vector space
- *Latent semantic indexing* (LSI) if the aim is constructing *document* vectors
 - Topically related documents are closer to each other in the vector space

Context matters

In SVD (and other) vector representations, the choice of context matters

- Larger contexts tend to find semantic/topical relationships
- Smaller (also order-sensitive) contexts tend to find syntactic generalizations

SVD based vectors: practical concerns

- In practice, instead of raw counts of terms within contexts, the term-document matrices typically contain
 - pointwise mutual information
 - tf-idf
- If the aim is finding latent (semantic) topics, frequent/syntactic words (stopwords) are often removed
- Depending on the measure used, it may also be important to normalize for the document length

SVD-based vectors: applications

- The SVD-based methods are commonly used in information retrieval
 - The system builds document vectors using SVD
 - The search terms are also considered as a 'document'
 - System retrieves the documents whose vectors are similar to the search term
- The well known Google PageRank algorithm is a variation of the SVD

In this context, the results is popularly called "the \$25 000 000 000 eigenvector".

SVD-based vectors: applications

- The SVD-based methods for semantic similarity is also common
- It was shown that the vector space models outperform humans in
 - TOEFL synonym questions

Receptors for the sense of smell are located at the top of the nasal cavity.

- A. upper end B. inner edge C. mouth D. division
- SAT analogy questions

Paltry is to significance as _____ is to _____.

A. redundant : discussion

B. austere : landscape

C. opulent : wealth

D. oblique : familiarity

E. banal: originality

• In general the SVD is a very important method in many fields

the song

Predictive models

- Instead of dimensionality reduction through SVD, we try to predict
 - either the target word from the context
 - or the context given the target word
- We assign each word to a fixed-size random vector
- We use a standard ML model and try to reduce the prediction error with a method like gradient descent
- During learning, the algorithm optimizes the vectors as well as the model parameters
- In this context, the word-vectors are called embeddings
- This types of models have become very popular in the last few years

Predictive models

- The idea is the 'locally' predict the context a particular word occurs
- Both the context and the words are represented as low dimensional dense vectors
- Typically, neural networks are used for the prediction
- The hidden layer representations are the vectors we are interested

25 / 36

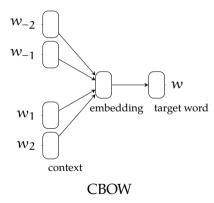
word2vec

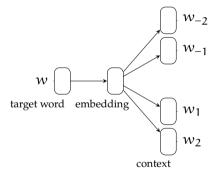
- word2vec is a popular algorithm and open source application for training word vectors (Mikolov et al. 2013)
- It has two modes of operation

CBOW or continuous bag of words predict the word using a window around the word Skip-gram does the reverse, it predicts the words in the context of the target word using the target word as the predictor

word2vec

CBOW and skip-gram modes – conceptually





Skip-gram

word2vec

a bit more in detail

- For each word *w* algorithm learns two sets of embeddings
 - v_w for words c_w for contexts
- Objective of the learning is to maximize (skip-gram)

$$P(c \mid w) = \frac{e^{v_w \cdot c_c}}{\sum_{c' \in c} e^{c_{c'} v_w}}$$

Note that the above is simply softmax – the learning method is equivalent to logistic regression, but we have additional parameters (c) to estimate

• Now, we can use gradient-based approaches to find word and context vectors that maximize this objective

Issues with softmax

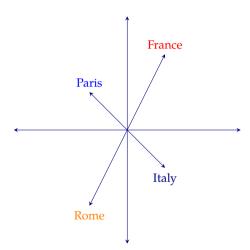
$$P(c \mid w) = \frac{e^{v_w \cdot c_c}}{\sum_{c' \in c} e^{c_{c'} v_w}}$$

- A particular problem with models with a softmax output is high computational cost:
 - For each instance in the training data denominator has to be calculated over the whole vocabulary (can easily be millions)
- Two workarounds exist:
 - Negative sampling: a limited number of negative examples (sampled from the corpus) are used to calculate the denominator
 - Hierarchical softmax: turn output layer to a binary tree, where probability of a
 word equals to the probability of the path followed to find the word
- Both methods are applicable to training, during prediction, we still need to compute the full softmax

word2vec: some notes

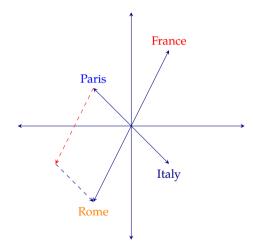
- Note that word2vec is not 'deep'
- word2vec preforms well, and it is much faster than earlier (more complex) ANN architectures developed for this task
- The resulting vectors used by many (deep) ANN models, but they can also be used by other 'traditional' methods
- word2vec treats the context as a BoW, hence vectors capture (mainly) semantic relationships
- There are many alternative formulations

Word vectors map some syntactic/semantic relations to vector operations



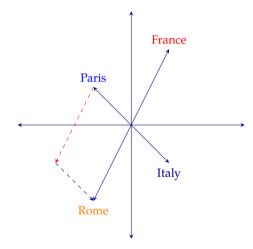
Word vectors map some syntactic/semantic relations to vector operations

• Paris - France + Italy = Rome



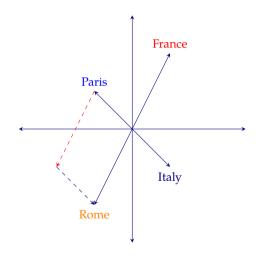
Word vectors map some syntactic/semantic relations to vector operations

- Paris France + Italy = Rome
- king man + woman = queen



Word vectors map some syntactic/semantic relations to vector operations

- Paris France + Italy = Rome
- king man + woman = queen
- ducks duck + mouse = mice



Other methods for building vector representations

- There (quite) a few other popular methods for building vector representations
- *GloVe* tries to combine local information (similar to word2vec) with global information (similar to SVD)
- FastText makes use of characters (n-grams) within the word as well as their context
- Recently some models of 'embedding in context' have become popular

Using vector representations

- Dense vector representations are useful for many ML methods
- They are particularly suitable for neural network models
- 'General purpose' vectors can be trained on unlabeled data
- They can also be trained for a particular purpose, resulting in 'task specific' vectors
- Dense vector representations are not specific to words, they can be obtained and used for any (linguistic) object of interest

Evaluating vector representations

- Like other unsupervised methods, there are no 'correct' labels
- Evaluation can be

Intrinsic based on success on finding analogy/synonymy
Extrinsic based on whether they improve a particular task (e.g., parsing, sentiment analysis)

- Correlation with human judgments

Differences of the methods

...or the lack thereof

- It is often claimed, after excitement created by word2vec, that prediction-based models work better
- Careful analyses suggest, however, that word2vec can be seen as an approximation to a special case of SVD
- Performance differences seem to boil down to how well the hyperparameters are optimized
- In practice, the computational requirements are probably the biggest difference

Summary

- Dense vector representations of linguistic units (as opposed to symbolic representations) allow calculating similarity/difference between the units
- They can be either based on counting (SVD), or predicting (word2vec, GloVe)
- They are particularly suitable for ANNs, deep learning architectures

Summary

- Dense vector representations of linguistic units (as opposed to symbolic representations) allow calculating similarity/difference between the units
- They can be either based on counting (SVD), or predicting (word2vec, GloVe)
- They are particularly suitable for ANNs, deep learning architectures

Next:

Wed Text classification

Mon Parsing

Additional reading, references, credits

- Upcoming edition of the textbook (Jurafsky and Martin 2009, ch.15 and ch.16) has two chapters covering the related material.
- See Levy, Goldberg, and Dagan (2015) for a comparison of different ways of obtaining embeddings.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

Levy, Omer, Yoav Goldberg, and Ido Dagan (2015). "Improving distributional similarity with lessons learned from word embeddings". In: Transactions of the Association for Computational Linguistics 3, pp. 211–225.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: CoRR abs/1301.3781. URL: http://arxiv.org/abs/1301.3781.