
Statistical NLP: course notes
Çağrı Çöltekin — SfS / University of Tübingen

2020-07-13

These notes are prepared for the class Statistical Natural Language
Processing taught in Seminar für Sprachwissenschaft, University of
Tübingen.

This work is licensed under a Creative Commons “Attribution 3.0
Unported” license.

Draft lecture notes. Version: 3e14fce@2020-05-28; neural-nets.tex cb

https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en






1 Deep learning, as it is commonly un-
derstood, is probably more than only
use of neural networks. However,
ANNs are at the center of the methods
that are collectively called deep learn-
ing.

Axon terminal

Axon

Soma

Dendrite

Figure 7.1: A schematic drawing of
a biological neuron (image source:
Wikipedia).

x2

x1

...

xm

w
1

w2

w
m

y

x0 = 1

w
0

Figure 7.2: A schematic representation
of perceptron.

7 Artificial neural networks

Artificial neural networks (ANNs) are powerful machine learning
methods. ANNs have been influential for the development of fields
like computer science, artificial intelligence and cognitive science.
Throughout their history, ANNs enjoyed times of popularity and
times that they were ‘out of fashion’. Currently, we are in one of
their popular times, mainly thorough the methods known as deep
learning.1 In this lecture, we will be discussing some of the basic
concepts on ANNs. We will build on these in later lectures as we
continue studying various methods relevant to NLP.

ANNs are inspired by (networks of) biological neurons. Neurons
(depicted in Figure 7.1) are the building blocks of a biological ner-
vous system. In typical operation (with a lot of simplification), a
neuron receives signals from other neurons at its dendrites, at con-
nection points that are called synapses. Depending on the inputs,
a neuron either ‘fires’ or stays inactive. When it fires, an electrical
signal is sent thorough its axon, which is then passed to the neurons
connected to its axon tendrils. The property of nervous systems that
are probably most relevant for ANNs is that they are made of simple
units which perform a simple computation. However as a whole the
system can perform very complex computations.

For most modern ANNs the connection with biological neurons is
just a point of inspiration. We do not take ANNs as models of animal
neural networks. ANNs are powerful machine learning methods. As
we will soon see, they share a lot with the simple machine learning
methods (with no reference to the biological systems) we discussed
earlier.

7.1 Revisiting perceptron and logistic regression

Historically, perceptron is the precursor of the neural networks. Re-
member that perceptron computes a weighted sum of its inputs,
passes the sum through a step function, and it either fires (output
+1), or does not (output −1). Figure 7.2 shows a schematic descrip-
tion of this process. In principle, one can build a network of percep-
trons, resulting in more powerful predictors. However, learning in
such a complex networks of perceptrons is not practical. Because of
the fact the step function used as the activation function is not suit-
able for learning in more complex networks. The reason for this has
to do with the fact that the derivative of the step function is 0 almost

Draft lecture notes. Version: 3e14fce@2020-05-28; neural-nets.tex cb

https://en.wikipedia.org/wiki/Neuron


90 statistical nlp: course notes

2 In fact, another way to think about
perceptron algorithm is a (regression)
model with a ‘hinge loss’. However
we will restrict the discussion of ANNs
here to more common architectures and
use cases.

x2

x1

...

xm

w
1

w2

w
m

P(y)

x0 = 1

w
0

Figure 7.3: A schematic representation
of logistic regression.

x2

x10 1

1

−

+

+

−

Figure 7.4: XOR function as a counter
example of linear separability. The in-
puts are x1 and x2, and the label −

used for cases where x1 xor x2 is 0,
and the label + used for cases where
x1 xor x2 is 1.
3 In fact, the fact that perceptron algo-
rithm cannot solve the XOR problem
had been one of the reasons that caused
a (rather unfounded) disappointment
and loss of interest after its first intro-
duction in 1950’s.

Table 7.1: A solution to the XOR prob-
lem by introducing a non-linear basis
function.

x1 x2 x1 +x2 − 2x1x2

0 0 0

0 1 1

1 0 1

1 1 0

0 1

0

1

−

+

+

−

x1

x
2

Figure 7.5: A visualization of the so-
lution in table 7.1. Note that the dis-
criminant function is discontinuous at
x1 = 0.5.

everywhere. As a result, the gradient cannot guide the steps for im-
proving the loss function. As we discussed earlier, the perceptron is
trained with a custom algorithm.2

We can view logistic regression as a ‘soft’ version of perceptron.
To demonstrate the similarities, Figure 7.3 demonstrates logistic re-
gression similar to the perceptron in Figure 7.2. In words, we get a
weighted sum of the inputs, pass the sum through the logistic sig-
moid function and output a numeric value in range (0, 1). Since the
function (and, hence, the prediction error) we use in logistic regres-
sion has non-zero derivative we can use gradient descent to fit the
parameters of the model. In fact, a very common unit used in artifi-
cial neural networks is identical to logistic regression.

Both the perceptron and the logistic regression are linear clas-
sifiers. Although they can solve non-linear classification problems
through use of non-linear basis functions, they can only solve prob-
lems that are linearly separable in their basic form. Before introduc-
ing ANNs, we will first discuss non-linearity.

7.2 Linear separability and non-linearity

Two classes are said to be linearly separable if there is a linear bound-
ary between all instances that belong to different classes. Linear
separability is an important concept in theory of machine learning,
and as we already saw some examples, linearly separable problems
tend to be easier to solve. A simple, prototypical example of linearly
non-separable problem is the logical XOR function (depicted in Fig-
ure 7.4). Remember that XOR of two logical (or binary) variables is
true (or 1) if the values differ, and false (or 0) otherwise. The inter-
esting part for us is that the XOR problem is a very simple example
of a linearly-non separable problem. It is impossible to draw a line
in Figure 7.4 that separates the classes (output of the XOR function).3

We already discussed how to turn a linear classifier to a non-linear
one. All we need to do is to introduce appropriate non-linear basis
functions. For example, if we introduce the basis function Φ(x) =

x1x2 as an additional input, we can easily find coefficients of a linear
model that solves the XOR problem. Table 7.1 shows a solution to
XOR problem with this basis function. The output of the solution
is the XOR value. For perceptron, for example, adding an intercept
of −0.5 would return negative sums for the class represented with
0, and positive sums for the other, allowing perceptron to solve this
problem. If we map the discriminant line (x1 + x2 − 2x1x2 − 0.5 =

0) to the original two dimensional input space, we get a non-linear
discriminant. Figure 7.5 shows the discriminant line, since the above
solution results in a discontinuous function at x1 = 0.5, we have
two curves in the plot. The result however, is a solution to the XOR
problem.

Another way to look at what we did with adding the basis func-
tion Φ(x) = x1x2 as a predictor to our linear classifier is to map
the original input space (non-linearly) into a 3-dimensional space.



artificial neural networks 91

0

1 0

1

0

1

x1
x2

x
1
x
2

Figure 7.6: Another, three-dimensional,
visualization of the solution in table 7.1.
Red points mark the positive class
(x1 xor x2 = 1) and blue points mark
the negative class (x1 xor x2 = 1).

x1

x2

x3

x4

yyy

Input Hidden Output

Figure 7.7: A multi-layer perceptron.
4 Unlike perceptron, however, the units
used in modern ANNs have continu-
ous, differentiable activation functions
with non-zero gradients which facilitate
learning.

Where the each dimension is the terms in the linear equation. Hence,
as well as the original input x1 and x2, we have another dimension
x1x2. Figure 7.6 demonstrates this view. Note that in the resulting
3-dimensional space the classes become linearly separable. The red
and blue dots in the plot can be separated by a plane.

In general, as we also saw with the polynomial regression exam-
ple, a non-linear classification problem can be solved with a linear
classifier using non-linear basis functions. The multiplicative func-
tion we used above is in no way special. There are many non-linear
basis function that one can use. In fact, we will see that we can
also solve the XOR problem using yet another non-linear function.
However, finding useful but minimal (we do not want the too many
features, and their associated parameters) non-linear basis functions
is not always trivial. Finding/selecting correct non-linear basis func-
tions to be used with linear models is often called feature engineer-
ing. We will see that one of the advantages of the neural models
is reducing this effort by finding the right sort of transformations
automatically.

Before finally introducing the neural networks, one last clarifica-
tion is in order. We often describe non-linearities with abstract func-
tions. For the newcomers to the field, however, it is often unclear
what does non-linearity mean in real-world. A common case of non-
linearity is the simply a non-linear relation between the predictors
and the outcome. A common example for this case is the age and
various cognitive abilities, and as a result success in tasks requir-
ing those abilities. When viewed longitudinally, cognitive abilities
increase during childhood and youth, however later on, they start
to decline with aging. As a result, this so-called U-shaped relation
cannot be expressed with linear models. The second common case
is interaction. Linear models treat the effects of the predictors addi-
tive. The effects add up independently of other predictors. There are
many real-world examples where this is not the case. For example,
in sentiment analysis the word ‘good’ is likely be a good predictor of
the positive sentiment, while the word ‘bad’ would likely to indicate
the negative sentiment. However, when combined with word ‘not’,
the effects reverse. A linear model adding effects of ‘not’ and ‘good’
or ‘bad’, would not be able to model this interaction. The multiplica-
tive basis functions, like the one in our example, is often a good way
to handle these type of non-linear interactions.

7.3 Multi-layer perceptron

The simplest neural network architecture is called the multi-layer per-
ceptron (MLP). As the name indicates, the network is built by multi-
ple layers of perceptron-like units.4 Figure 7.7 depicts an MLP with
a single hidden layer. The information flow in the network is feed for-
ward, the inputs are connected to the hidden layer, the hidden layer
outputs are connected to the output layer. There are no backward
connections, or connections between the units in the same layer. The



92 statistical nlp: course notes

∑
f(·)x2

x1

...

xm

w
1

w2

w
m

y

x0 = 1

w
0

Figure 7.8: A depiction of a single unit
in an artificial neural network.

f(x) =
1

1+ e−x

x

(logistic) sigmoid

f(x) =
e2x − 1

e2x + 1

x

hyperbolic tangent (tanh)

f(x) = max(0,x)

x

rectified linear unit (relu)

Figure 7.9: Common activation func-
tions for neural networks.

layers are also fully connected: every unit in a layer is connected to
every unit in the next one. The networks we will discuss in this lec-
ture has these two properties. In later lectures we will see networks
with sparse connectivity between the units, and ones that are with
non-feed forward connections.

A single unit in an ANN functions similar to the linear classifiers.
The unit’s output is simply a function f(·) of the weighted sum of its
inputs:

y = f

 m∑
j

wjxj

 = f(wx)

The function f(·), called an activation function, is typically a contin-
uous non-linear function. A few examples of common activation
functions used in neural networks are shown in Figure 7.9.

The first activation function shown in Figure 7.9 is the now famil-
iar logistic function. The second one is another, s-shaped (sigmoid)
function, hyperbolic tangent (tanh). These two functions have been
popular since the early days of neural networks. The last one, recti-
fied linear unit, or ReLU, is a piecewise linear function that became
popular relatively recently. Common to these functions are that they
are differentiable, and have non-zero derivatives (in the range they
are intended to operate). In principle, one can use any differentiable
function as an activation function. However, some activation func-
tions facilitate learning, and those are used more often in practice.

As hinted above, the choice of activation functions is rather flexi-
ble. However, this is true for the hidden layers. On the output layer,
the task we want to solve restricts the choices. Although not exclu-
sive, (logistic) sigmoid is most popular choice of activation function
for binary classification. As you would remember from the logis-
tic regression, this allows us to interpret the output of the model as
the probability of the positive class conditioned on the input. For
multi-class classification, the softmax function we introduced earlier
is a common choice. Remember that softmax is is a generalization of
the logistic function to more than two classes, and defined as,

P(y = k | x) =
ewkx∑
j e

wjx
.

Note that the equation above means that we have one output unit for
each class label. The expression in the denominator makes sure that
the outputs of all units sum to one.

Although we will mostly discuss neural networks in the context of
classification, they can also be used for regression problems. In this
case, we typically use the identity function as the activation func-
tion. The hidden layers still help finding a non-linear solution (or
intermediate representation that maps the non-linear problem to a
linearly-solvable one), and the we can view the final output layer,
which simply outputs a weighted sum of its input without any non-
linear activation function, as scaling the internal representations built
by the network to the correct scale/unit of the output variable.



artificial neural networks 93

x1

x2

h1

h2

y1

y2

f() g()

w11

w
12

w
21

w22

v11

v 2
1

v
12

v22

Figure 7.10: A simple multi-layer per-
ceptron. f(·) and g(·) are the activa-
tion functions used in hidden and the
output layers respectively. For the sake
of simplicity, we do not have an inter-
cept (bias term) in this model.

x1 h1

y

x2 h2

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

−
3

1

1

1

1

1

1

Figure 7.11: An MLP for solving the
XOR problem. The inputs at the bottom
that are always 1 are intercept terms.

7.4 Forward propagation in neural networks

We now are ready to fully define the output of a feed-forward net-
work. We will do this through the simple example presented in Fig-
ure 7.10. This network has two predictors and two output variables
to predict. The activation function choices of the hidden units is
rather flexible, one can choose any activation function that makes
sense for a particular problem. However, as noted earlier, the choice
is made among a set of well-known, well-tested activation functions.
The activation functions for the output units are based on the type of
problem solved by the neural network. For this particular example,
we have a single hidden layer with two units.

To calculate the output values, it is generally more convenient,
and easy to understand, to break down the computations involved
into pieces. In this network, we first calculate the weighted sum of
the input variables for each hidden unit, and apply the activation
function f(·). Then, the units in the output layer takes the output of
the hidden layer, compute the weighted sum, and apply the output
activation function g(·). More formally,

hj = f

(∑
i

wijxi

)
and yk = g

∑
j

vjkhj

 .

Note that the input to the activation functions are simply dot prod-
ucts of input vectors and the corresponding weight vectors. If we
write the weights for each layer as matrices,

W =

[
w11 w12

w21 w22

]
and V =

[
v11 v12

v21 v22

]

we can simplify our notation with,

h = f(WTx) = f(xTW) and y = g(VTh) = g(hTV)

where, following the convention, we consider input and hidden vec-
tors as column vectors. What is important to realize here is that,
the network computes a series of matrix-vector products, followed
by elementwise application of the activation functions. Viewing in-
puts and outputs of each layer as vectors, function of each layer is
performing a (non-linear) transformation of its input.

It is also important to realize that the function the whole network
implements can be represented by composition of the functions at
each layer. Putting the above together,

y = g
(
f(xTW)V

)
.

To make this discussion more concrete, we will go through a sim-
ple example, that intends to solve the XOR problem. The network is
schematically described in Figure 7.11. For the sake of example, the
weights (marked on the edges) are determined manually. Normally,
we want to learn these weights. Since we have a binary classification



94 statistical nlp: course notes

Table 7.2: The solution for the XOR
problem using the network in Fig-
ure 7.11.

x1 x2 h1 h2 y

0 0 4 0 0.27
0 1 1 1 0.73
1 0 1 1 0.73
1 1 0 4 0.27

x2

x1−

0

+1

+

1

−

h2

h1
0

−

4

++

−4

Figure 7.12: A demonstration of the
transformation computed by the hid-
den layer of the network presented in
Figure 7.11.

x1 h1

y

x2 h2

a

b

c

d

e

f

Figure 7.13: A simple network for
demonstrating the need for non-linear
activation. Without non-linear activa-
tion functions the output of the network
is y = (ea+ fb)x1 +(ec+ fd)x2, a
linear transformation of the input vari-
ables.

problem, we use the logistic sigmoid activation at the output units.
For the hidden layer, we use square function as activation, which is
unusual in real applications, but makes hand-calculations easier.

Now, we go through calculations of input vector (0, 1) explicitly.

h1 = f(1× x1 + 1× x2 − 2) = (0+ 1− 2)2 = 1

h2 = f(1× x1 + 1× x2 + 0) = (0+ 1+ 0)2 = 1

y = g(1× h1 + 1× h2 − 3) =
1

1+ e1
= 0.73

The output of the network for the other possible input combinations
can be calculated similarly. Remembering that the operation above
can be performed by matrix-vector product, we also can write down
our weight matrix, and multiply with the input matrix.

h = f

[1 x1 x2

]
×

−2 0

1 1

1 1




y = g

[1 h1 h2

]
×

−31
1




We do not explicitly calculate the rest of the input values we are
interested, but we give the network’s output, including the values
at the hidden layer, for all relevant values for the XOR problem in
Table 7.2. Note that the output of the network for inputs (0, 1) and
(1, 0) is above 0.5. As a result we classify these values as belonging
to the positive class, and since the other two input are below 0.5 they
are assigned to the negative class.

Another interesting observation with the solution is presented in
Figure 7.12. The upper panel plots the original XOR problem sim-
ilar to Figure 7.4. The lower panel shows how these points are
transformed by the hidden layer. The points that represent differ-
ent classes on the lower panel are linearly separable. As a result, the
output layer, which is simply a binary logistic regression classifier
can find a solution. The transformation performed by the hidden
layer turns a problem that is not linearly separable into a linearly
separable one.

Note that the reason the hidden layer can transform a non-linearly-
separable problem into a linearly separable one is the fact that it
uses a non-linear activation function. Without the non-linear activa-
tion, regardless of the depth of the network, what we do is a series
of matrix–vector multiplications, in other words, linear transforma-
tions. As demonstrated in Figure 7.13, wihtout non-linear activation
functions, the result is yet another linear transformation.



artificial neural networks 95

−20
0

20 −20

0

202

4

6

global min.
local min.

w1

w2

E
(w

)

Figure 7.14: A demonstration of multi-
ple minima with two parameters.

x1 h1

y

x2 h2

a

b

c

d

e

f

Figure 7.15: A simple neural network
for demonstrating the propagation of
error. In a single layer network (without
hidden layer) the error would be due to
weight e or f. For the network above,
the error at output node y need to dis-
tributed to the weights marked in red
and blue.

7.5 Learning in neural networks

Like the earlier methods we discussed, learning in ANNs is achieved
thorough minimizing an error function. The choice of exact error
function is related to the task and the network architecture. In gen-
eral, the minimum of the neural network error functions cannot be
found using analytic solutions (as in regression). As a result, we need
to employ a search strategy like gradient descent, to find the minimum
of the error function. We have already seen models whose minimum
error can be found using gradient descent. As long as the error func-
tion is convex, gradient descent can find the global minimum of the
error function. The problem we face with neural networks is that the
error functions are not necessarily convex. There may be multiple
minima as demonstrated in Figure 7.14. Although we want to find
the global minimum, gradient descent is not guaranteed to find it. It
may stop in one of the local minima. Some training procedures may
help avoiding local minima. However, there is no general solution to
find the global minimum of an ANN error function.

7.5.1 Backpropagation

Another issue about learning in neural networks arises because of
the layered architecture of the system that makes learning in ANNs
more challenging. It is computationally non-trivial to assign credit
or blame to the weights of the non-final layers. We will discuss the
solution and the problem through the simple example we presented
earlier, which is repeated with slight modification in Figure 7.15. The
figure indicates two possible paths in the network that may have
caused the error on output unit y with two different colors. If we
had a single layer, gradient descend would update the weights e
and f based on their partial derivatives (the steepness of the error
function in the corresponding dimension). Since we do not have
direct notion of error in the hidden layer, we need a mechanism to
determine how to distribute the responsibility for error.

As noted above, we want to essentially use gradient descent, which
means we need the gradient of the error with respect to the weights.
We will go through a (very) simplified example based on the net-
work in Figure 7.15. For the sake of demonstration, we will assume
that we are minimizing y (normally we minimize the error which
is a function of y, but we will soon see that the principles apply to
more realistic cases as well). The gradient of the whole network is
the vector

∇y =

(
∂y

∂a
,
∂y

∂b
,
∂y

∂c
,
∂y

∂d
,
∂y

∂e
,
∂y

∂f

)
that is, the partial derivatives of the network with respect to each
weight. For the sake of demonstration we will calculate the partial
derivatives with respect to e, a and c, with some heavy simplifica-
tion. Partial derivative ∂y

∂e can be calculated in a rather straightfor-
ward way for a differentiable function. All other parts of the network



96 statistical nlp: course notes

5 In general, derivative of a function
F(x) = f(g(x)) is calculated using the
chain rule of derivatives:

F ′(x) = f ′(g(x))g ′(x)

w2

w1

er
ro

r

Figure 7.16: A demonstration of the
paths taken by gradient descent (blue)
and stochastic gradient descent (red) on
an (hypothetical) error surface.

are constant terms with respect to e.
Calculation of the partial derivatives with respect to a and c is

slightly more involved, as h1 is a function of these variables. How-
ever, we can simply apply the chain rule of derivatives5

∂y

∂a
=
∂y

∂h1

∂h1
∂a

and
∂y

∂c
=
∂y

∂h1

∂h1
∂c

. (7.1)

The main point here is that we can calculate the partial derivative
with respect to any of the weights. If our networks gets deeper, the
terms for the earlier weights will have more terms due to repeated
application of the chain rule, and due to the fact that in our rep-
resentation above each layer implements two pieces of computation
(a linear mapping followed by application of the activation function).
Hence, once we factor these in, we will have more terms in the partial
derivation calculations in Equation 7.1 even for our simple network
above. Furthermore, we can consider the error function as a final
node, taking the output of the network, and calculating the error,
which means the above notion of calculating gradient works. In fact,
this will work for any computation graph without cycles.

So far, what we did was just math, telling us a we can calculate
the gradient for a feed-forward network. However, you should note
that the term ∂y

∂h1
Equation 7.1 is required for calculating the par-

tial derivatives with respect to both a and c. Repeated calculation
of same the same quantities makes a naive attempt to implement the
above procedure computationally very inefficient. Making it impos-
sible to use in most modern neural networks which include thou-
sands, if not millions, of parameters. Also note that we typically
calculate the error on a large number of inputs with many dimen-
sions, which makes the problem even more complex.

The solution to this problem is called the backpropagation algo-
rithm. The idea is similar to many dynamic programming algo-
rithms. The backpropagation algorithm simply stores the quantities
like ∂y

∂h1
above and avoids recalculating them.

7.5.2 Stochastic and mini-batch gradient descent

In typical gradient descent learning, the gradient is calculated using
the complete training data. However, with large training sets this
is computationally inefficient. Together with large number of pa-
rameters, the space complexity (required memory) may become an
important issue.

There is a well-known, memory-efficient variant, stochastic gradient
descent, which updates weights for every single training instance.
Since the stochastic gradient descent changes the weights for every
single training instance, it is noisy, it may sometimes take steps in
the opposite direction of the minimum. However, in the long run, it
is known converge to the same minimum.

Figure 7.16 demonstrates the possible paths taken by gradient de-
scent and the stochastic gradient descent on an error surface defined
on two paramters. Since the error surface is a function of the whole



artificial neural networks 97

input data, the gradient descent will take sure steps toward the min-
imum with fewer steps. The stochastic version will wander around
the error surface more since the gradient is calculated only based
on a single input, and likely to take many more steps. However,
stochastic gradient descent will also require fewer calculations and
less memory at every step.

In practice, it is more common to use a mini batch update strategy
that is a compromise between full gradient descent and the stochastic
version. Mini batches are computationally more attractive, they both
fit into memory and can also be computed much faster on vector
processing hardware such as graphical processing units (GPUs) in
comparison to stochastic gradient descent.

Furthermore, it turns out the batch size is an important parame-
ter in many cases. The choice of batch size affects the outcome of
training a neural network, and often large batch sizes may be non-
optimal. This effect is likely due to the fact that (full) batch gradient
descent converges to the closest minimum with sure steps even if
it is a rather ‘shallow’ local minima. On the other hand stochastic
or mini-batch version may skip over the minor ‘bumps’ in the er-
ror surface, eventually finding a better (local) minimum on the error
surface.

7.5.3 Countermeasures for overfitting

As in any machine learning model, ANNs can also overfit. They
may be even more prone to overfitting due to their complexity in
comparison to, e.g., linear classifiers. As in linear models, one way
to counteract overfitting is regularization. One can apply L1 or L2

regularization to ANNs, by adding L1 or L2 norm of the weights to
the error function.

Another popular method to prevent overfitting is dropout, where a
randomly chosen input and/or hidden unit in the network is ‘turned
off’, by setting their (output) value to 0. Each layer, has access to
only a random view of its input for each input instance. As a result
it is forced to learn from partial information. Dropout is known to
reduce overfitting. It is also seen as learning an ensemble of multiple
classifiers, each operating on a subset of features. It is a technique
that is typically used in practice.

Another method of preventing overfitting is early stopping. The
idea with early stopping is to monitor the loss on a validation set
at every epoch (or some other interval like every batch update), and
stop when the validation error starts increasing.

The above is not the exclusive listing of the possibilities, and use
of one of these methods does not prevent the use of the others. A
combination of the three methods discussed above (and others) can
also be used within the same network architecture.



98 statistical nlp: course notes

6 Just to list a few typical ones: number
of layers, number of units at each layer,
activation functions at each layer, reg-
ularization method and its parameters,
number of epochs to train the network,
weight initialization, batch size, learn-
ing rate, (adaptive) learning method
and its parameters . . .

7 Just to name a few: Adagrad,
Adadelta, RMSprop, Adam, . . .

7.5.4 Some tricks of the trade

Non-convex error functions (multiple minima) mean that gradient
descent will not necessarily find the global minimum while training
neural networks. Furthermore, the large number of possible vari-
ations of architecture and hyperparameters6 make neural network
training often more involved than traditional (linear) models. Al-
though, their renewed popularity made it easier (through common
practices, higher-level libraries with better default behavior), train-
ing neural networks well, particularly the networks beyond simple
ones, require a substantial amount of (hands-on) experience. How
to train neural networks properly and efficiently is an active area of
research, and often theory and understanding lags behind some es-
tablished practices. Here, we try to point out some of the common
issues.

One common alternation to gradient descent while training neural
networks is to add momentum. Even though the mini-batch training
is indeed found to be useful, and used in practice almost exclusively,
smaller batch sizes may also cause the jumps at every step of gradient
descent as demonstrated in Figure 7.16. To make sure that the mini-
batch methods do follow a more straight course, one can add the
previous gradient (or an average of previous gradients). With the
momentum, gradient descent updates become, for example,

∆wij(t) = η
∂E

∂wij
+α∆wij(t− 1)

where η is the usual learning rate, and α is another hyperparameter
determining the strength of the momentum. Intuitively, momentum
cause a larger update if the current gradient is in the direction of the
previous gradient(s), otherwise it will change its course towards the
earlier course of the descent.

Another important factor in neural network training is the learn-
ing rate. Typically we want to start with higher learning rate, and
reduce it as the learning progresses. Simple algorithms that ‘decay’
the learning rate (e.g. linearly) based on number of iterations are
often used in practice. However, there are quite a few adaptive algo-
rithms which set the learning (and possibly other parameters such as
the momentum parameter we discussed above) in a smart way. We
will not go into details of each of these optimization algorithms, but
note that there are quite a few of them and most machine learning li-
braries or platforms offer out-of-the-box implementations.7 For most
ANN practitioners, using one of these algorithms is often more prac-
tical (for both finding a good minimum and for finding it quickly)
than custom adaptions.

Summary

This lecture is a first (gentle) introduction to ANNs. The later lectures
will cover some (more complex) ANN architectures used in practice.



artificial neural networks 99

With the popularity of deep learning, many (online / free) tutori-
als and books on neural networks became available. For general and
more comprehensive/technical introductions to ANNs, the readers
are referred to usual textbooks in the field (e.g., Hastie, Tibshirani,
and Friedman 2009; MacKay 2003; Bishop 2006). For a more NLP-
oriented discussion, the third edition of Jurafsky and Martin (2009)
includes a chapter on neural networks, and Goldberg (2016) includes
a survey of the use of various ANN architectures in NLP along with
an introduction (there is also a recent book, Goldberg 2017, with a
similar content).





Bibliography

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learn-
ing. Springer. isbn: 978-0387-31073-2.

Goldberg, Yoav (2016). “A primer on neural network models for nat-
ural language processing”. In: Journal of Artificial Intelligence Re-
search 57, pp. 345–420.

Goldberg, Yoav (2017). Neural Network Methods in Natural Language
Processing. Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers. isbn: 9781627052955.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The
Elements of Statistical Learning: Data Mining, Inference, and Predic-
tion. Second. Springer series in statistics. Springer-Verlag New York.
isbn: 9780387848587. url: http://web.stanford.edu/~hastie/
ElemStatLearn/.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language
Processing: An Introduction to Natural Language Processing, Compu-
tational Linguistics, and Speech Recognition. second. Pearson Prentice
Hall. isbn: 978-0-13-504196-3.

MacKay, David J. C. (2003). Information Theory, Inference and Learning
Algorithms. Cambridge University Press. isbn: 978-05-2164-298-9.
url: http://www.inference.phy.cam.ac.uk/itprnn/book.html.

Draft lecture notes. Version: 3e14fce@2020-05-28; neural-nets.tex cb

http://web.stanford.edu/~hastie/ElemStatLearn/
http://web.stanford.edu/~hastie/ElemStatLearn/
http://www.inference.phy.cam.ac.uk/itprnn/book.html

	Artificial neural networks
	Revisiting perceptron and logistic regression
	Linear separability and non-linearity
	Multi-layer perceptron
	Forward propagation in neural networks
	Learning in neural networks


